forked from OpenGVLab/InternVL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
756 lines (666 loc) · 29.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import argparse
import datetime
import os
import random
import subprocess
import time
from contextlib import suppress
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from config import get_config
from dataset import build_loader
from logger import create_logger
from lr_scheduler import build_scheduler
from models import build_model
from optimizer import build_optimizer
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.utils import ApexScaler, AverageMeter, ModelEma, accuracy
from utils import MyAverageMeter
from utils import NativeScalerWithGradNormCount as NativeScaler
from utils import (auto_resume_helper, get_grad_norm, load_checkpoint,
load_ema_checkpoint, load_pretrained, reduce_tensor,
save_checkpoint)
try:
from apex import amp
has_apex = True
except ImportError:
has_apex = False
# assert not has_apex, "The code is modified based on native amp"
has_native_amp = False
try:
if getattr(torch.cuda.amp, 'autocast') is not None:
has_native_amp = True
except AttributeError:
pass
TORCH_VERSION = tuple(int(x) for x in torch.__version__.split('.')[:2])
def obsolete_torch_version(torch_version, version_threshold):
return torch_version == 'parrots' or torch_version <= version_threshold
def parse_option():
parser = argparse.ArgumentParser(
'InternVL training and evaluation script', add_help=False)
parser.add_argument('--cfg',
type=str,
required=True,
metavar='FILE',
help='path to config file')
parser.add_argument(
'--opts',
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+')
# easy config modification
parser.add_argument('--batch-size',
type=int,
help='batch size for single GPU')
parser.add_argument('--dataset',
type=str,
help='dataset name',
default=None)
parser.add_argument('--data-path', type=str, help='path to dataset')
parser.add_argument('--zip',
action='store_true',
help='use zipped dataset instead of folder dataset')
parser.add_argument(
'--cache-mode',
type=str,
default='part',
choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece'
)
parser.add_argument(
'--pretrained',
help=
'pretrained weight from checkpoint, could be imagenet22k pretrained weight'
)
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--accumulation-steps',
type=int,
default=1,
help='gradient accumulation steps')
parser.add_argument(
'--use-checkpoint',
action='store_true',
help='whether to use gradient checkpointing to save memory')
parser.add_argument(
'--amp-opt-level',
type=str,
default='O1',
choices=['O0', 'O1', 'O2'],
help='mixed precision opt level, if O0, no amp is used')
parser.add_argument(
'--output',
default='work_dirs',
type=str,
metavar='PATH',
help=
'root of output folder, the full path is <output>/<model_name>/<tag> (default: output)'
)
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval',
action='store_true',
help='Perform evaluation only')
parser.add_argument('--throughput',
action='store_true',
help='Test throughput only')
parser.add_argument('--save-ckpt-num', default=1, type=int)
parser.add_argument(
'--use-zero',
action='store_true',
help='whether to use ZeroRedundancyOptimizer (ZeRO) to save memory')
# distributed training
parser.add_argument('--local-rank',
type=int,
required=True,
help='local rank for DistributedDataParallel')
parser.add_argument('--launcher',
choices=['pytorch', 'slurm'],
default='pytorch')
args, unparsed = parser.parse_known_args()
config = get_config(args)
return args, config
@torch.no_grad()
def throughput(data_loader, model, logger):
model.eval()
for idx, (images, _) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
batch_size = images.shape[0]
for i in range(50):
model(images)
torch.cuda.synchronize()
logger.info(f'throughput averaged with 30 times')
tic1 = time.time()
for i in range(30):
model(images)
torch.cuda.synchronize()
tic2 = time.time()
logger.info(
f'batch_size {batch_size} throughput {30 * batch_size / (tic2 - tic1)}'
)
return
def main(config):
# prepare data loaders
dataset_train, dataset_val, dataset_test, data_loader_train, \
data_loader_val, data_loader_test, mixup_fn = build_loader(config)
# build runner
logger.info(f'Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}')
model = build_model(config)
model.cuda()
logger.info(str(model))
# build optimizer
optimizer = build_optimizer(config, model)
if config.AMP_OPT_LEVEL != 'O0':
config.defrost()
if has_native_amp:
config.native_amp = True
use_amp = 'native'
elif has_apex:
config.apex_amp = True
use_amp = 'apex'
else:
use_amp = None
logger.warning(
'Neither APEX or native Torch AMP is available, using float32. '
'Install NVIDA apex or upgrade to PyTorch 1.6')
config.freeze()
# setup automatic mixed-precision (AMP) loss scaling and op casting
amp_autocast = suppress # do nothing
loss_scaler = None
if config.AMP_OPT_LEVEL != 'O0':
if use_amp == 'apex':
model, optimizer = amp.initialize(model,
optimizer,
opt_level=config.AMP_OPT_LEVEL)
loss_scaler = ApexScaler()
if config.LOCAL_RANK == 0:
logger.info(
'Using NVIDIA APEX AMP. Training in mixed precision.')
if use_amp == 'native':
amp_autocast = torch.cuda.amp.autocast
loss_scaler = NativeScaler()
if config.LOCAL_RANK == 0:
logger.info(
'Using native Torch AMP. Training in mixed precision.')
else:
if config.LOCAL_RANK == 0:
logger.info('AMP not enabled. Training in float32.')
# put model on gpus
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[config.LOCAL_RANK], broadcast_buffers=False)
# try:
# model.register_comm_hook(state=None, hook=fp16_compress_hook)
# logger.info('using fp16_compress_hook!')
# except:
# logger.info("cannot register fp16_compress_hook!")
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters()
if p.requires_grad)
logger.info(f'number of params: {n_parameters}')
if hasattr(model_without_ddp, 'flops'):
flops = model_without_ddp.flops()
logger.info(f'number of GFLOPs: {flops / 1e9}')
# build learning rate scheduler
lr_scheduler = build_scheduler(config, optimizer, len(data_loader_train)) \
if not config.EVAL_MODE else None
# build criterion
if config.AUG.MIXUP > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif config.MODEL.LABEL_SMOOTHING > 0.:
criterion = LabelSmoothingCrossEntropy(
smoothing=config.MODEL.LABEL_SMOOTHING)
else:
criterion = torch.nn.CrossEntropyLoss()
max_accuracy = 0.0
max_ema_accuracy = 0.0
# set auto resume
if config.MODEL.RESUME == '' and config.TRAIN.AUTO_RESUME:
resume_file = auto_resume_helper(config.OUTPUT)
if resume_file:
if config.MODEL.RESUME:
logger.warning(
f'auto-resume changing resume file from {config.MODEL.RESUME} to {resume_file}'
)
config.defrost()
config.MODEL.RESUME = resume_file
config.freeze()
logger.info(f'auto resuming from {resume_file}')
else:
logger.info(
f'no checkpoint found in {config.OUTPUT}, ignoring auto resume'
)
# set resume and pretrain
if config.MODEL.RESUME:
max_accuracy = load_checkpoint(config, model_without_ddp, optimizer,
lr_scheduler, loss_scaler, logger)
if data_loader_val is not None:
if config.DATA.DATASET == 'imagenet-real':
filenames = dataset_val.filenames()
filenames = [os.path.basename(item) for item in filenames]
from dataset.imagenet_real import RealLabelsImagenet
real_labels = RealLabelsImagenet(filenames, real_json='meta_data/real.json')
acc1, acc5, loss = validate_real(config, data_loader_val, model, real_labels, amp_autocast=amp_autocast)
logger.info(
f'ReaL Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%'
)
else:
acc1, acc5, loss = validate(config, data_loader_val, model, amp_autocast=amp_autocast)
logger.info(
f'Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%'
)
elif config.MODEL.PRETRAINED:
load_pretrained(config, model_without_ddp, logger)
if data_loader_val is not None:
acc1, acc5, loss = validate(config, data_loader_val, model, amp_autocast=amp_autocast)
logger.info(
f'Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%'
)
# evaluate EMA
model_ema = None
if config.TRAIN.EMA.ENABLE:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(model, decay=config.TRAIN.EMA.DECAY)
print('Using EMA with decay = %.8f' % config.TRAIN.EMA.DECAY)
if config.MODEL.RESUME:
load_ema_checkpoint(config, model_ema, logger)
if config.DATA.DATASET == 'imagenet-real':
# assert only one gpu
assert dist.get_world_size() == 1, 'imagenet-real should test with one gpu'
filenames = dataset_val.filenames()
filenames = [os.path.basename(item) for item in filenames]
from dataset.imagenet_real import RealLabelsImagenet
real_labels = RealLabelsImagenet(filenames, real_json='meta_data/real.json')
acc1, acc5, loss = validate_real(config, data_loader_val, model_ema.ema, real_labels,
amp_autocast=amp_autocast)
logger.info(
f'ReaL Accuracy of the ema network on the {len(dataset_val)} test images: {acc1:.1f}%'
)
else:
acc1, acc5, loss = validate(config, data_loader_val, model_ema.ema, amp_autocast=amp_autocast)
logger.info(
f'Accuracy of the ema network on the {len(dataset_val)} test images: {acc1:.1f}%'
)
if config.THROUGHPUT_MODE:
throughput(data_loader_val, model, logger)
if config.EVAL_MODE:
return
# train
logger.info('Start training')
start_time = time.time()
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
data_loader_train.sampler.set_epoch(epoch)
train_one_epoch(config,
model,
criterion,
data_loader_train,
optimizer,
epoch,
mixup_fn,
lr_scheduler,
amp_autocast,
loss_scaler,
model_ema=model_ema)
if (epoch % config.SAVE_FREQ == 0 or epoch == (config.TRAIN.EPOCHS - 1)) and config.TRAIN.OPTIMIZER.USE_ZERO:
optimizer.consolidate_state_dict(to=0)
if dist.get_rank() == 0 and (epoch % config.SAVE_FREQ == 0 or epoch == (config.TRAIN.EPOCHS - 1)):
save_checkpoint(config,
epoch,
model_without_ddp,
max_accuracy,
optimizer,
lr_scheduler,
loss_scaler,
logger,
model_ema=model_ema)
if data_loader_val is not None and epoch % config.EVAL_FREQ == 0:
acc1, acc5, loss = validate(config, data_loader_val, model, epoch, amp_autocast=amp_autocast)
logger.info(
f'Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%'
)
if dist.get_rank() == 0 and acc1 > max_accuracy:
save_checkpoint(config,
epoch,
model_without_ddp,
max_accuracy,
optimizer,
lr_scheduler,
loss_scaler,
logger,
model_ema=model_ema,
best='best')
max_accuracy = max(max_accuracy, acc1)
logger.info(f'Max accuracy: {max_accuracy:.2f}%')
if config.TRAIN.EMA.ENABLE:
acc1, acc5, loss = validate(config, data_loader_val,
model_ema.ema, epoch, amp_autocast=amp_autocast)
logger.info(
f'Accuracy of the ema network on the {len(dataset_val)} test images: {acc1:.1f}%'
)
if dist.get_rank() == 0 and acc1 > max_ema_accuracy:
save_checkpoint(config,
epoch,
model_without_ddp,
max_accuracy,
optimizer,
lr_scheduler,
loss_scaler,
logger,
model_ema=model_ema,
best='ema_best')
max_ema_accuracy = max(max_ema_accuracy, acc1)
logger.info(f'Max ema accuracy: {max_ema_accuracy:.2f}%')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
def train_one_epoch(config,
model,
criterion,
data_loader,
optimizer,
epoch,
mixup_fn,
lr_scheduler,
amp_autocast=suppress,
loss_scaler=None,
model_ema=None):
model.train()
optimizer.zero_grad()
num_steps = len(data_loader)
batch_time = AverageMeter()
model_time = AverageMeter()
loss_meter = AverageMeter()
norm_meter = MyAverageMeter(300)
start = time.time()
end = time.time()
amp_type = torch.float16 if config.AMP_TYPE == 'float16' else torch.bfloat16
for idx, (samples, targets) in enumerate(data_loader):
iter_begin_time = time.time()
samples = samples.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
if not obsolete_torch_version(TORCH_VERSION,
(1, 9)) and config.AMP_OPT_LEVEL != 'O0':
with amp_autocast(dtype=amp_type):
outputs = model(samples)
else:
with amp_autocast():
outputs = model(samples)
if config.TRAIN.ACCUMULATION_STEPS > 1:
if not obsolete_torch_version(
TORCH_VERSION, (1, 9)) and config.AMP_OPT_LEVEL != 'O0':
with amp_autocast(dtype=amp_type):
loss = criterion(outputs, targets)
loss = loss / config.TRAIN.ACCUMULATION_STEPS
else:
with amp_autocast():
loss = criterion(outputs, targets)
loss = loss / config.TRAIN.ACCUMULATION_STEPS
if config.AMP_OPT_LEVEL != 'O0':
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
grad_norm = loss_scaler(loss,
optimizer,
clip_grad=config.TRAIN.CLIP_GRAD,
parameters=model.parameters(),
create_graph=is_second_order,
update_grad=(idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0)
if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0:
optimizer.zero_grad()
if model_ema is not None:
model_ema.update(model)
else:
loss.backward()
if config.TRAIN.CLIP_GRAD:
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), config.TRAIN.CLIP_GRAD)
else:
grad_norm = get_grad_norm(model.parameters())
if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0:
optimizer.step()
optimizer.zero_grad()
if model_ema is not None:
model_ema.update(model)
if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0:
lr_scheduler.step_update(epoch * num_steps + idx)
else:
if not obsolete_torch_version(
TORCH_VERSION, (1, 9)) and config.AMP_OPT_LEVEL != 'O0':
with amp_autocast(dtype=amp_type):
loss = criterion(outputs, targets)
else:
with amp_autocast():
loss = criterion(outputs, targets)
optimizer.zero_grad()
if config.AMP_OPT_LEVEL != 'O0':
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
grad_norm = loss_scaler(loss,
optimizer,
clip_grad=config.TRAIN.CLIP_GRAD,
parameters=model.parameters(),
create_graph=is_second_order,
update_grad=(idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0)
if model_ema is not None:
model_ema.update(model)
else:
loss.backward()
if config.TRAIN.CLIP_GRAD:
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), config.TRAIN.CLIP_GRAD)
else:
grad_norm = get_grad_norm(model.parameters())
optimizer.step()
if model_ema is not None:
model_ema.update(model)
lr_scheduler.step_update(epoch * num_steps + idx)
torch.cuda.synchronize()
loss_meter.update(loss.item(), targets.size(0))
if grad_norm is not None:
norm_meter.update(grad_norm.item())
batch_time.update(time.time() - end)
model_time.update(time.time() - iter_begin_time)
end = time.time()
if idx % config.PRINT_FREQ == 0:
lr = optimizer.param_groups[0]['lr']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
logger.info(
f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'model_time {model_time.val:.4f} ({model_time.avg:.4f})\t'
f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f}/{norm_meter.var:.4f})\t'
f'mem {memory_used:.0f}MB')
epoch_time = time.time() - start
logger.info(
f'EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}'
)
@torch.no_grad()
def validate_real(config, data_loader, model, real_labels, amp_autocast=suppress):
# https://github.com/baaivision/EVA/blob/master/EVA-01/eva/engine_for_finetuning.py#L195
criterion = torch.nn.CrossEntropyLoss()
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
end = time.time()
amp_type = torch.float16 if config.AMP_TYPE == 'float16' else torch.bfloat16
for idx, (images, target) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
if not obsolete_torch_version(TORCH_VERSION, (1, 9)) and config.AMP_OPT_LEVEL != 'O0':
with amp_autocast(dtype=amp_type):
output = model(images)
else:
with amp_autocast():
output = model(images)
# convert 22k to 1k to evaluate
if output.size(-1) == 21841:
convert_file = './meta_data/map22kto1k.txt'
with open(convert_file, 'r') as f:
convert_list = [int(line) for line in f.readlines()]
output = output[:, convert_list]
real_labels.add_result(output)
# measure accuracy and record loss
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
acc1 = reduce_tensor(acc1)
acc5 = reduce_tensor(acc5)
loss = reduce_tensor(loss)
loss_meter.update(loss.item(), target.size(0))
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
# real labels mode replaces topk values at the end
top1a, top5a = real_labels.get_accuracy(k=1), real_labels.get_accuracy(k=5)
print('* ReaL Acc@1 {:.3f} Acc@5 {:.3f} loss {losses:.3f}'
.format(top1a, top5a, losses=loss_meter.avg))
return top1a, top5a, loss_meter.avg
@torch.no_grad()
def validate(config, data_loader, model, epoch=None, amp_autocast=suppress):
criterion = torch.nn.CrossEntropyLoss()
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
end = time.time()
amp_type = torch.float16 if config.AMP_TYPE == 'float16' else torch.bfloat16
for idx, (images, target) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
if not obsolete_torch_version(TORCH_VERSION, (1, 9)) and config.AMP_OPT_LEVEL != 'O0':
with amp_autocast(dtype=amp_type):
output = model(images)
else:
with amp_autocast():
output = model(images)
# convert 22k to 1k to evaluate
if output.size(-1) == 21841:
convert_file = './meta_data/map22kto1k.txt'
with open(convert_file, 'r') as f:
convert_list = [int(line) for line in f.readlines()]
output = output[:, convert_list]
if config.DATA.DATASET == 'imagenet_a':
from dataset.imagenet_a_r_indices import imagenet_a_mask
output = output[:, imagenet_a_mask]
elif config.DATA.DATASET == 'imagenet_r':
from dataset.imagenet_a_r_indices import imagenet_r_mask
output = output[:, imagenet_r_mask]
# measure accuracy and record loss
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
acc1 = reduce_tensor(acc1)
acc5 = reduce_tensor(acc5)
loss = reduce_tensor(loss)
loss_meter.update(loss.item(), target.size(0))
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
if epoch is not None:
logger.info(
f'[Epoch:{epoch}] * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}'
)
else:
logger.info(
f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}')
return acc1_meter.avg, acc5_meter.avg, loss_meter.avg
if __name__ == '__main__':
_, config = parse_option()
if config.AMP_OPT_LEVEL != 'O0':
assert has_native_amp, 'Please update pytorch(1.6+) to support amp!'
# init distributed env
if _.launcher == 'slurm':
print('\nDist init: SLURM')
rank = int(os.environ['SLURM_PROCID'])
gpu = rank % torch.cuda.device_count()
config.defrost()
config.LOCAL_RANK = gpu
config.freeze()
world_size = int(os.environ['SLURM_NTASKS'])
if 'MASTER_PORT' not in os.environ:
os.environ['MASTER_PORT'] = '29501'
node_list = os.environ['SLURM_NODELIST']
addr = subprocess.getoutput(
f'scontrol show hostname {node_list} | head -n1')
if 'MASTER_ADDR' not in os.environ:
os.environ['MASTER_ADDR'] = addr
os.environ['RANK'] = str(rank)
os.environ['LOCAL_RANK'] = str(gpu)
os.environ['LOCAL_SIZE'] = str(torch.cuda.device_count())
os.environ['WORLD_SIZE'] = str(world_size)
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ['RANK'])
world_size = int(os.environ['WORLD_SIZE'])
print(f'RANK and WORLD_SIZE in environ: {rank}/{world_size}')
else:
rank = -1
world_size = -1
torch.cuda.set_device(config.LOCAL_RANK)
torch.distributed.init_process_group(backend='nccl',
init_method='env://',
world_size=world_size,
rank=rank)
torch.distributed.barrier()
seed = config.SEED + dist.get_rank()
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
# linear scale the learning rate according to total batch size, may not be optimal
linear_scaled_lr = config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
linear_scaled_min_lr = config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
# gradient accumulation also need to scale the learning rate
if config.TRAIN.ACCUMULATION_STEPS > 1:
linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_warmup_lr = linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS
config.defrost()
config.TRAIN.BASE_LR = linear_scaled_lr
config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr
config.TRAIN.MIN_LR = linear_scaled_min_lr
print(config.AMP_OPT_LEVEL, _.amp_opt_level)
config.freeze()
os.makedirs(config.OUTPUT, exist_ok=True)
logger = create_logger(output_dir=config.OUTPUT,
dist_rank=dist.get_rank(),
name=f'{config.MODEL.NAME}')
if dist.get_rank() == 0:
path = os.path.join(config.OUTPUT, 'config.json')
with open(path, 'w') as f:
f.write(config.dump())
logger.info(f'Full config saved to {path}')
# print config
logger.info(config.dump())
main(config)