-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwolinkarm_feedforward.m
218 lines (162 loc) · 4.37 KB
/
twolinkarm_feedforward.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
function f = twolinkarm_feedforward()
clc; clear all; close all;
S.m1 = 1;
S.m2 = 1;
S.l1 = .5;
S.l2 = .5;
S.lc1 = .25;
S.lc2 = .25;
S.I1 = S.m1*S.l1/12;
S.I2 = S.m2*S.l2/12;
S.g = 9.8;
% initial state with high-velocity
x0 = [0; 0; 1; 1; 0; 0];
S.x0 = x0;
% desired state
xd = [5; 7; 0; 0; 0; 0];
S.xd = xd;
% desired accelration -- only applicable for trajectory tracking
S.ad = [0; 0];
T = 20; % simulation time
S.T = T;
S.kp = 20; S.kd = 15;
% perturb initial condition
x0rand = x0+5*rand(size(x0));
[ts, xs] = ode45(@arm_ode, [0 T], x0rand, [], S);
%flat outputs initial and final
y0 = uni_h(x0);
yf = uni_h(xd);
% flat output 1st order
dy0 = [x0(3);x0(4)]; % desired starting velocity
dyf = [xd(3);xd(4)]; % desired end velocity
AA = getA(0, T, x0(1), x0(2), xd(1), xd(2), x0(3), x0(4), xd(3), xd(4));
% AAA = poly3_coeff(y0, dy0, yf, dyf, T);
X = AA*poly3([0:.1:T]);
X_d = AA*dpoly3([0:.1:T]);
%desired acceleration q1_ddot, q2_ddot
X_dd = AA*ddpoly3([0:.1:T]);
Time = [0:0.1:T];
for i = 1:length(X_dd)
xinput = [X(:,i);
X_d(:,i)];
acc = X_dd(:,i);
[M, C, N] = arm_dyn(xinput, S);
b = C*X_d(:,i) + N;
ud(:,i)=M*(acc+inv(M)*b);
end
for i = 1:length(ts)
x = xs(i,1:2)';
v = xs(i,3:4)';
a = xs(i,5:6)';
xinput = [x;
v];
[M, C, N] = arm_dyn(xinput, S);
b = C*v + N;
u_exec(:,i) = M*(a+inv(M)*b);
end
figure(1)
plot(X(1,:),X(2,:), '-r')
hold on
plot(xs(:,1), xs(:,2), '-b')
plot(S.xd(1),S.xd(2),'*g')
xlabel('shoulder q1')
ylabel('elbow q2')
legend('qd(t)', 'executed', 'goal')
hold off
figure(2)
plot(Time, ud(1,:), '-r')
hold on
plot(Time, ud(2,:), '-b')
plot(ts, u_exec(1,:), '-m')
plot(ts, u_exec(2,:), '-k')
xlabel('time')
ylabel('Joint angles in radians')
legend('ud1(t)', 'ud2(t)', 'u1(t)', 'u2(t)')
% for i = 1:length(ts)
% t = ts(i);
% actual_xdd = AA*ddpoly3(t);
% u_d = S.M*(actual_xdd)
% % u =
% end
function dx = arm_ode(t, x, S)
% the ODE for the arm
Y = [0 S.x0(3) S.xd(1) 0;
0 S.x0(4) S.xd(2) 0];
LambdaInv = [1 0 -3/S.T^2 2/S.T^3;
0 1 -2/S.T 1/S.T^2;
0 0 3/S.T^2 -2/S.T^3;
0 0 -1/S.T 1/S.T^2];
A_mat = Y*LambdaInv;
lambda = [ones(size(t));
t;
t.^2;
t.^3];
y = A_mat * lambda;
dpoly3 = [zeros(size(t));
ones(size(t));
2*t;
3*t.^2];
ddpoly3 = [zeros(size(t));
zeros(size(t));
2;
6*t];
y_dot = A_mat*dpoly3;
y_ddot = A_mat*ddpoly3;
[M, C, N] = arm_dyn(x, S);
q = x(1:2);
v = x(3:4);
b = C*v + N;
virtualinput = y_ddot-S.kp*(q-y)-S.kd*(v-y_dot);
u = M*virtualinput + b;
acc = -inv(M)*b+inv(M)*u;
dx = [v;
inv(M)*(u - C*v - N);
acc];
function [M, C, N] = arm_dyn(x, S)
% compute the dynamical terms of the manipulator
% M - mass matrix
% C - Corilois matrix
% N - gravity/damping forces vector
q = x(1:2);
v = x(3:4);
c1 = cos(q(1));
c2 = cos(q(2));
s2 = sin(q(2));
c12 = cos(q(1) + q(2));
% coriolis matrix
C = -S.m2*S.l1*S.lc2*s2*[v(2), v(1) + v(2);
-v(1), 0] + diag([.2;.2]);
% mass elements
m11 = S.m1*S.lc1^2 + S.m2*(S.l1^2 + S.lc2^2 + 2*S.l1*S.lc2*c2) + ...
S.I1 + S.I2;
m12 = S.m2*(S.lc2^2 + S.l1*S.lc2*c2) + S.I2;
m22 = S.m2*S.lc2^2 + S.I2;
% mass matrix
M = [m11, m12;
m12, m22];
% gravity, damping, etc...
N = [(S.m1*S.lc1 + S.m2*S.l1)*S.g*c1 + S.m2*S.lc2*S.g*c12;
S.m2*S.lc2*S.g*c12];
function A = getA(t0, tf, p0x, p0y, pfx, pfy, v0x, v0y, vfx, vfy)
Y = [p0x v0x pfx vfx;
p0y v0y pfy vfy];
lambda_i = [1; t0; t0^2; t0^3];
lambda_f = [1; tf; tf^2; tf^3];
lambda_i_dot = [0; 1; 2*t0; 3*t0^2];
lambda_f_dot = [0; 1; 2*tf; 3*tf^2];
L = [lambda_i lambda_i_dot lambda_f lambda_f_dot];
A = Y*inv(L);
function A = poly3_coeff(y0, dy0, yf, dyf, T)
% computes cubic curve connecting (y0,dy0) and (yf, dyf) at time T
Y = [y0, dy0, yf, dyf];
L = [poly3(0), dpoly3(0), poly3(T), dpoly3(T)];
A = Y*inv(L);
function f = poly3(t)
f = [ones(size(t)); t; t.^2; t.^3];
function f = dpoly3(t)
f = [zeros(size(t)); ones(size(t)); 2*t; 3*t.^2];
function f= ddpoly3(t)
f = [zeros(size(t)); zeros(size(t)); 2*ones(size(t)); 6*t];
function y = uni_h(x)
% output function
y = x(1:2);