Skip to content

Fine Tuning Query Representation using Iterative Negative Feedback

Notifications You must be signed in to change notification settings

muditchaudhary/646_NegativeFeedback

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 

Repository files navigation

Fine Tuning Query Representation using Iterative Negative Feedback

by Mudit Chaudhary, Dhawal Gupta

Read paper here: https://drive.google.com/file/d/1vyr7ot67V1EcvOtLCm9CROuLNMNq54S6/view?usp=sharing

Datasets

We provide pre-processed version of training and dev sets from MS-Marco here: https://drive.google.com/drive/folders/1SWb4w8TrLmHkEgGM8GOCdNHXn2EdF7iN?usp=sharing

Generating and storing cached representations

python src/rankers/dpr.py --input_file <input file path> \
 --query_cache <query representation save path> \
 --passage_cache <passage representation save path>

Training and Evaluation

python src/launch.py --alpha1=4 --alpha2=10 --alpha3=4 \
--cached_embeddings_root=./data/cached_embeddings/ \ # Cached embedding root folder
--dataset_folder=./data/processed_data/ \ # Dataset root folder
--embedding_type=normalized_embedding \ 
--epochs=20 \ 
--learning_rate=0.00172854898644987 \
--max_refining_iterations=5 \
--neg_sample_rank_from=900 \
--neg_sample_rank_to=1000 \
--neg_sampling_ranker=dpr \
--num_neg_samples=20 \
--partial_eval_steps=100 \ # To perform partial evaluation on dev set. Set to None for full eval
--save_model_root=./saved_models \
--train_batch_size=3 \
--warmup_percent=0.2968326853108489 \
--use_wandb=True \ # For wandb logging \
--save_preds_root ./saved_preds/ \
--eval_only # For performing only evaluation and no training

About

Fine Tuning Query Representation using Iterative Negative Feedback

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages