Skip to content

mujiezhang/PSP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Prophage-SOS-dependency-Predictor(PSP)

PSP is a novel bioinformatics tool to predict prophage induction modes by analyzing the heterology index (HI) of LexA protein binding to target DNA, classifying prophages into SOS-dependent (SdPs) and SOS-independent (SiPs).

Dependencies

  • PSP is a Python script that relies on:
DIAMOND
MEME
Python3
scikit-learn

Installation

(1) git

git clone https://github.com/mujiezhang/PSP.git
cd PSP
python psp.py -h

(2) conda

conda create -n PSP python=3.12
conda activate PSP
conda install PSP

usage: psp -h

Input files

PSP needs four files as inputs,i.e.,

  • -hf: a host genome in fasta format
  • -vf: a single viral genome in fasta format
  • -motif: a motif file provided by psp as 19-motifs-meme.txt
  • -lexa: lexa database for diamond blastp provided by psp as uniprot_swiss_prot_LexA.dmnd

other parameters *-wd: woking path to save result files

How to run

The users can only specify the required parameters:

python psp.py -hf host-genome.fasta -vf virus-genome.fasta -motif 19-motifs-meme.txt -lexa uniprot_swiss_prot_LexA.dmnd -wd output_dir

for example:

python psp.py -hf E.coli-HS.fasta -vf phiECO1.fasta -motif 19-motifs-meme.txt -lexa uniprot_swiss_prot_LexA.dmnd -wd .

Running this example with one core takes approximately two minutes. And you will get two files: host_whole_genome_HI.tsv and prediction.tsv

Attention

  • PSP is designed for complete host and corresponding complete virus for that host. Using incomplete genome as input may influence the prediction accuracy.

Citation

''''''

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages