-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathparallel.py
242 lines (181 loc) · 8.79 KB
/
parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import time
import argparse
from collections import deque
import numpy as np
import torch
import ray
from utils import make_env, make_model, make_memory
def test(envs, weights, rollouts, explore):
"""Helper function for evaluating current policy in environments."""
for w in weights:
for k, v in w.items():
w[k] = v.cpu()
return [env.rollout.remote(weights, rollouts, explore) for env in envs]
@ray.remote(num_cpus=1)
class EnvWrapper:
"""Interface to a Gym env that enables distributed evaluation.
Parameters
----------
env_creator: callable function that creates a Gym Environment
model_creator: callable function that returns an actor
seed: random seed to use
Notes
-----
Assumes a model / policy has a "sample_action" function that returns
a value from the model
"""
def __init__(self, env_creator, model_creator, seed=None):
if seed is None:
seed = np.random.randint(1234567890)
np.random.seed(seed)
torch.manual_seed(seed)
self.env = env_creator()
self.policy = model_creator()
def step(self, action):
"""Takes a step in the environment."""
if not isinstance(action, np.ndarray):
action = action.cpu().numpy().flatten()
return self.env.step(action)
def reset(self):
return self.env.reset()
def rollout(self, weights, num_episodes=5, explore_prob=0.):
"""Performs a full grasping episode in the environment."""
self.policy.set_weights(weights)
episodes = []
for _ in range(num_episodes):
state = self.reset().transpose(2, 0, 1)[np.newaxis]
step = 0.
done = False
cur_episode = []
while not done:
# Note state is normalized to [0, 1]
s0 = state.astype(np.float32) / 255.
action = self.policy.sample_action(s0, step, explore_prob)
next_state, reward, done, _ = self.step(action)
next_state = next_state.transpose(2, 0, 1)[np.newaxis]
cur_episode.append((state, action, reward,
next_state, done, step))
state = next_state
step = step + 1.
episodes.append(cur_episode)
return episodes
def main(args):
"""Main driver for evaluating different models.
Can be used in both training and testing mode.
"""
if args.seed is None:
args.seed = np.random.randint(1234567890)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# Use the factory method to make both model and environment (e.g. every
# call to make_env() will spawn a new environment using same parameters).
# Note that models aren't very large and can be run quickly on CPU.
env_creator = make_env(args.max_steps, args.is_test, args.render)
model_creator = make_model(args, torch.device('cpu'))
envs = []
for _ in range(args.remotes):
envs.append(EnvWrapper.remote(env_creator, model_creator, args.seed_env))
# Trainable model does a significant amount of more work, so put on GPU
device = torch.device('cpu' if args.no_cuda or not
torch.cuda.is_available() else 'cuda')
model = make_model(args, device)()
if args.checkpoint is not None:
model.load_checkpoint(args.checkpoint)
# Train
if not args.is_test:
checkpoint_dir = os.path.join('checkpoints', args.model)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
# Some methods have specialized memory implementations
memory = make_memory(args.model, args.buffer_size)
memory.load(**vars(args))
# Perform a validation step every full pass through the data
iters_per_epoch = args.buffer_size // args.batch_size
# Keep a running average of n-epochs worth of rollouts
step_queue = deque(maxlen=1 * args.rollouts * args.remotes)
reward_queue = deque(maxlen=step_queue.maxlen)
loss_queue = deque(maxlen=iters_per_epoch)
best = -np.inf
results = []
start = time.time()
for episode in range(args.max_epochs * iters_per_epoch):
loss = model.train(memory, **vars(args))
loss_queue.append(loss)
if episode % args.update_iter == 0:
model.update()
# Validation step;
# Here we take the weights from the current network, and distribute
# them to all remote instances. While the network trains for another
# epoch, these instances will run in parallel & evaluate the policy.
# If an epoch finishes before remote instances, training will be
# halted until outcomes are returned
if episode % iters_per_epoch == 0:
cur_episode = '%d' % (episode // iters_per_epoch)
model.save_checkpoint(os.path.join(checkpoint_dir, cur_episode))
# Collect results from the previous epoch.
# Note that all steps of a rollout are returned, but only the
# last one will have the reward for that episode.
for device in ray.get(results):
for ep in device:
# (s0, act, r, s1, terminal, timestep)
step_queue.append(ep[-1][-1])
reward_queue.append(ep[-1][2])
# Update weights of remote network & perform rollouts
results = test(envs, model.get_weights(),
args.rollouts, args.explore)
print('Epoch: %s, Step: %2.4f, Reward: %1.2f, Loss: %2.4f, '\
'Took:%2.4fs' %
(cur_episode, np.mean(step_queue), np.mean(reward_queue),
np.mean(loss_queue), time.time() - start))
if np.mean(reward_queue) > best:
best = np.mean(reward_queue)
model.save_checkpoint(os.path.join(checkpoint_dir, 'best'))
start = time.time()
print('---------- Testing ----------')
# Note if this happens naturally after the model has been trained
# (and not from the --test flag), this will be wrong as it will use
# the training objects instead of testing.
results = test(envs, model.get_weights(), args.rollouts, args.explore)
steps, rewards = [], []
for device in ray.get(results):
for ep in device:
# (s0, act, r, s1, terminal, timestep)
steps.append(ep[-1][-1])
rewards.append(ep[-1][2])
print('Average across (%d) episodes: Step: %2.4f, Reward: %1.2f' %
(len(rewards), np.mean(steps), np.mean(rewards)))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Off Policy Deep Q-Learning')
# Generic parameters
parser.add_argument('--model', default='dqn',
choices=['dqn', 'ddqn', 'ddpg', 'supervised', 'mcre', 'cmcre'])
parser.add_argument('--checkpoint', default=None)
parser.add_argument('--epochs', dest='max_epochs', default=50, type=int)
parser.add_argument('--explore', default=0.0, type=float)
parser.add_argument('--no-cuda', action='store_true', default=False)
parser.add_argument('--rollouts', default=6, type=int)
parser.add_argument('--remotes', default=10, type=int)
# Memory model parameters; these get passed to make_memory function
parser.add_argument('--data-dir', default='data100K')
parser.add_argument('--buffer-size', default=100000, type=int)
# Hyperparameters; these get pass from make_model into corresponding algs
parser.add_argument('--seed', default=12345, type=int)
parser.add_argument('--seed-env', default=None, type=int)
parser.add_argument('--channels', dest='out_channels', default=32, type=int)
parser.add_argument('--gamma', default=0.90, type=float)
parser.add_argument('--decay', default=1e-5, type=float)
parser.add_argument('--lr', dest='lrate', default=1e-3, type=float)
parser.add_argument('--batch-size', default=512, type=int)
parser.add_argument('--update', dest='update_iter', default=50, type=int)
parser.add_argument('--uniform', dest='num_uniform', default=16, type=int)
parser.add_argument('--cem', dest='num_cem', default=64, type=int)
parser.add_argument('--cem-iter', default=3, type=int)
parser.add_argument('--cem-elite', default=10, type=int)
# Environment Parameters; if you add any, make sure to modify make_env above
parser.add_argument('--max-steps', default=15, type=int)
parser.add_argument('--render', action='store_true', default=False)
parser.add_argument('--test', dest='is_test', action='store_true', default=False)
args = parser.parse_args()
ray.init(num_cpus=args.remotes)
main(args)