Skip to content

SQLAlchemy extension for handling JSON data stored in PostgreSQL

License

Notifications You must be signed in to change notification settings

mwhite/JSONAlchemy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

JSONAlchemy

JSONAlchemy makes it easier to use a relational database to deal with data that you might otherwise use a NoSQL database for, such as nested JSON data, JSON data with missing values, and multi-tenant or multi-user JSON data with a different schema for each tenant or user.

When using PostgreSQL with a JSON or JSONB column, JSONAlchemy lets you create a traditional table interface for accessing a subset of a JSON table by using a view specified in terms of a JSON Schema and a query on the table.

Each property in the view is backed by a unique partial index to ensure optimum query performance using index-only scans.

JSONAlchemy is implemented as an SQLAlchemy extension.

Usage

First, create a table with a Postgres JSON column.

INSERT INTO forms (type_id, data) VALUES
    (1, '{"foo": {"bar": 5}, "baz": "spam"}'),
    (1, '{"foo": {"bar": 6}, "baz": "quux"}'),
    (1, '{"baz": "quux"}'),
    (2, '{"foo": {"bar": "type 2 is ignored"}, "baz": 7}');

Then, define a JSON Schema for a subset of the data.

>>> from sqlalchemy import create_engine
>>> from sqlalchemy.orm import sessionmaker
>>> engine = create_engine('postgresql://user:password@localhost/')
>>> Session = sessionmaker(bind=engine)
>>> session = Session()
>>> q = session.query(Form).filter(Form.type_id == 1)
>>> schema = {
...     'type': 'object',
...     'properties': {
...          'foo': {
...              'type': 'object',
...              'properties': {
...                  'bar': {
...                      'type': 'integer'
...                  }
...              }
...          },
...          'baz': {
...              'type': 'string'
...          }
...     }
... }

(Form is an SQLAlchemy declarative model. SQLAlchemy's database introspection can be used if SQLAlchemy models are not used for the tables being handled.)

Finally, create a view of the JSON data using an application-level pseudo-DDL statement in an SQLAlchemy session.

>>> from jsonalchemy import CreateJSONView
>>> create_json_view = CreateJSONView('my_view', q, Form.data, schema)
>>> session.execute(create_json_view)

Voila!

=# SELECT * FROM my_view;
 forms_id | data.foo.bar | data.baz 
----------+--------------+------------
        3 |              | quux
        2 |            6 | quux
        1 |            5 | spam

Supported data types

Postgres type JSON representation JSON Schema definition
text string type: 'string'
int integer type: 'integer'
float float type: 'number'
decimal string type: 'string', format: 'decimal'
boolean boolean type: 'boolean'
timestamp with timezone milliseconds since epoch or ISO 8601 string type : 'string', format: 'date-time'
timestamp without timezone same as above type: 'string', format: 'date-time-no-tz'
date same as above type: 'string', format: 'date'
PostGIS point (Geometry) "<lng>,<lat>" type: 'string', format': 'geopoint'

Views of arrays of objects

Arrays of objects in the JSON data handled by JSONAlchemy are supported using the array JSON Schema type.

JSONAlchemy creates a separate table for each array property containing one row for each array value.

INSERT INTO forms (type_id, data) VALUES
    (2, '{"id": 1, "foo": [{"bar": 5, "baz": "spam"}, {"bar": 7, "baz": "foobar"}]}'),
    (2, '{"id": 2, "foo": [{"bar": 6, "baz": "hjkl"}, {"bar": 8, "baz": "foobar"}]}'),
    (2, '{"id": 3, "baz": "quux"}');

Specify the ID property name in a non-standard id_property field in the schema one level above the array property to indicate the ID to be used in the join condition.

>>> q = session.query(Form).filter(Form.type_id == 2)
>>> schema = {
...     'type': 'object',
...     'id_property': 'id',
...     'properties': {
...          'id': {
...              'type': 'integer'
...          },
...          'foo': {
...              'type': 'array',
...              'items': {
...                  'bar': {
...                      'type': 'integer'
...                  },
...                  'baz': {
...                      'type': 'string'
...                  }
...              }
...          },
...     }
... }
>>> create_json_view = CreateJSONView('my_view', q, Form.data, schema,
...                                   use_materialized_view=True)
>>> session.execute(create_json_view)

A view containing all values for the array property will be created named according to the pattern <view_name>_<property_name>.

=# SELECT my_view."data.id", my_view_foo."foo.bar", my_view_foo."foo.baz"
     FROM my_view LEFT JOIN my_view_foo ON my_view.forms_id =
         my_view_foo.parent_id;
 data.id | foo.bar | foo.baz 
---------+---------+----------
       1 |       5 | spam 
       1 |       7 | foobar 
       2 |       6 | hjkl
       2 |       8 | foobar
       3 |         |

Arrays of objects within arrays of objects are not supported.

The array view uses a materialized view under the hood to enable queries to be backed by functional indexes due to limitations of JSON indexing functions in SQL databases. To avoid using a materialized view and lose the benefits of indexes on the array data, pass use_materialized_view=False to CreateJSONView.

API

class CreateJSONView(sqlalchemy.schema.DDLElement):
    """
    An SQLAlchemy DDL element that constructs a standard view of JSON properties
    and creates associated partial indexes that back the view.

    Arguments:

    name -- the view name as a string
    query -- an SQLAlchemy Query indicating the table to select from and filters
    to apply
    json_column -- the SQLAlchemy Column of the table to draw data from
    json_schema -- a JSON Schema object that defines the structure of the JSON
        column
    extract_date_parts -- a list of fields corresponding to SQL timestamp
        subfields (e.g. 'year', 'month', 'day') to create as separate calculated
        columns for each datetime or date column in the JSON.  Date part columns will
        be named as <datetime_column>_year, etc.

        See
        http://www.postgresql.org/docs/8.1/static/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
    indexes -- create indexes for the columns in the view (Default: True)
    replace -- drop the existing view with this name (Default: False)
    drop_existing_indexes -- drop existing indexes backing the view (Default: False)
    use_materialialized_view -- use a materialized instead of non-materialized
        view for intermediate views when creating an additional view of a
        JSON property containing an array of objects (Default: False)
    """
    def __init__(self, name, query, json_column, json_schema,
                 extract_date_parts=None, indexes=True, replace=False,
                 drop_existing_indexes=False, use_materialized_view=False):

JSON Schema support

The oneOf, allOf, and anyOf fields are supported. (They have no special interpretation from the perspective of this tool.)

Support for defining objects as arrays of simple values does not yet exist.

All properties must have a single type defined.

License

Copyright 2014-2020 Michael White

Released under the MIT License. See LICENSE.txt.

About

SQLAlchemy extension for handling JSON data stored in PostgreSQL

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages