Skip to content

Commit

Permalink
thesis draft v2.75
Browse files Browse the repository at this point in the history
  • Loading branch information
mxochicale committed Oct 18, 2018
1 parent c56dfdd commit 214b455
Show file tree
Hide file tree
Showing 1,192 changed files with 24,662 additions and 545 deletions.
22 changes: 22 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,3 +9,25 @@ It is recommended to read the instructions on how to use the template

There is a README.md in each Chapter to refer to the original chapter1.tex file
and also as a logbook for any changes.



## Citation

If you use or adapt any of the files in this repository,
use the following BibTeX to cite [my PhD thesis](http://).

```
@phdthesis{XochicalePhDThesis2018,
author = {Xochicale Miguel},
month = {10},
Year = {2018},
school = {University of Birmingham},
address = {Birmingham, United Kingdom},
Title = {Nonlinear Analyses to Quantify Movement Variability in Human-Humanoid Interaction},
type = {{PhD} dissertation as submitted},
}
```



File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
4 changes: 2 additions & 2 deletions appendixD/appendixD.tex → appendixD/appendix.tex
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
%*******************************************************************************
%****************************** Appendix C *************************************
%****************************** Appendix D *************************************
%*******************************************************************************
\chapter{Results for all data} \label{appendix:d}
\chapter{Additional Results for HII experiment} \label{appendix:d}



Expand Down
10 changes: 10 additions & 0 deletions appendixE/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@


#todo

* [ ] add figures for timeseries, RSSs, RPs, and RQA
Fri 14 Sep 12:01:30 BST 2018




313 changes: 313 additions & 0 deletions appendixE/appendix.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,313 @@
%*******************************************************************************
%****************************** Appendix E *************************************
%*******************************************************************************
\chapter{Additional results for HHI experiment} \label{appendix:e}


%% **************************** Define Graphics Path **************************
%\graphicspath{{chapter7/figs/raster/}{chapter7/figs/PDF/}{chapter7/figs/}}
\graphicspath{{figs/chapter6/PDF/}}


\LaTeX .cls files can be accessed system-wide when they are placed in the
<texmf>/ tex/ latex directory, where <texmf> is the root directory of the user’s
\TeX installation.
On systems that have a local texmf tree (<texmflocal>), which
may be named ``texmf-local'' or ``localtexmf'', it may be advisable to install
packages in <texmflocal>, rather than <texmf> as the contents of the former,
unlike that of the latter, are preserved after the \LaTeX system is reinstalled
and/or upgraded.


\section{Time Series} \label{appendix:e:ts}


\section{Embedding parameters} \label{appendix:e:ep}



%%---------------------------------(FIGURE)-------------------------------------
%\begin{figure}[!h]
\begin{figure}
\centering
\includegraphics[width=1.0\textwidth]{cao_aHw10}
\caption{
{\bf Minimum embedding dimensions for horizontal arm movements.}
(A, B) Horizontal Normal (HN), (C, D) Horizontal Faster (HF)
movements,
(A, C) sensor attached to participants (HS01), and
(B, D) sensor attached to robot (RS01).
Minimum embedding dimensions are for twenty participants
(p01 to p20) with three smoothed signals
(sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ)
and window lenght of 10-sec (500 samples).
R code to reproduce the figure is available
from \cite{hwum2018}.
}
\label{fig:caoH}
\end{figure}
%%---------------------------------(FIGURE)------------------------------------

%%---------------------------------(FIGURE)-------------------------------------
%\begin{figure}[!h]
\begin{figure}
\centering
\includegraphics[width=1.0\textwidth]{cao_aVw10}
\caption{
{\bf Minimum embedding dimensions for vertical arm movements.}
(A, B) Vertical Normal (VN), (C, D) Vertical Faster (VF)
movements,
(A, C) sensor attached to participants (HS01), and
(B, D) sensor attached to robot (RS01).
Minimum embedding dimensions are for twenty participants
(p01 to p20) with three smoothed signals (sg0zmuvGyroY,
sg1zmuvGyroY and sg2zmuvGyroY)
and window length of 10-sec (500 samples).
R code to reproduce the figure is available
from \cite{hwum2018}.
}
\label{fig:caoV}
\end{figure}
%%---------------------------------(FIGURE)------------------------------------



%%---------------------------------(FIGURE)-------------------------------------
%\begin{figure}[!h]
\begin{figure}
\centering
\includegraphics[width=1.0\textwidth]{ami_aHw10}
\caption{
{\bf First minimum AMI values for horizontal arm movements.}
(A, B) Horizontal Normal (HN), (C, D) Horizontal Faster (HF)
movements,
(A, C) sensor attached to participants (HS01), and
(B, D) sensor attached to robot (RS01).
First minimum AMI values are for twenty participants
(p01 to p20) with three smoothed signals (sg0zmuvGyroZ,
sg1zmuvGyroZ and sg2zmuvGyroZ) and window lenght of
10-sec (500 samples).
R code to reproduce the figure is available
from \cite{hwum2018}.
}
\label{fig:amiH}
\end{figure}
%%---------------------------------(FIGURE)------------------------------------

%%---------------------------------(FIGURE)-------------------------------------
%\begin{figure}[!h]
\begin{figure}
\centering
\includegraphics[width=1.0\textwidth]{ami_aVw10}
\caption{
{\bf First minimum AMI values for vertical arm movements.}
(A, B) Vertical Normal (VN), (C, D) Vertical Faster (VF)
movements,
(A, C) sensor attached to participants (HS01), and
(B, D) sensor attached to robot (RS01).
First minimum AMI values are for twenty participants
(p01 to p20) with three smoothed signals (sg0zmuvGyroZ,
sg1zmuvGyroZ and sg2zmuvGyroZ) and window lenght of
10-sec (500 samples).
R code to reproduce the figure is available
from \cite{hwum2018}.
}
\label{fig:amiV}
\end{figure}
%%---------------------------------(FIGURE)------------------------------------




\section{RSSs} \label{appendix:e:rsss}
\section{RPs} \label{appendix:e:rps}


\section{RQAs} \label{appendix:e:rpas}

\subsection{REC values}
It can be seen in Figs~\ref{fig:rec_aH} and \ref{fig:rec_aV}
that REC values, representing the \% of black dots in the RPs,
are more spread for HN than HF movements with time
series coming from HS01 sensor.
In contrast, REC values appear to be constant and present little variation
for both HN and HF movements with time series from the sensor attached
to the humanoid robot RS01.
With regard to the increase of smoothness of time series
(sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ), REC values present little
variation as the smoothness is increasing for time series from HS01 and
REC values more similar as the smoothness is increasing for data from RS01.


%%---------------------------------(FIGURE)-------------------------------------
\begin{figure}[!h]
\centering
\includegraphics[width=1.0\textwidth]{rec_aH}
\caption{
{\bf REC values for horizontal arm movements.}
REC values (representing \% of black dots in the RPs) for
20 participants performing HN and HF movements
with sensors HS01, RS01 and three smoothed-normalised axis
of GyroZ (sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ).
REC values were computed with
embedding parameters $m=6$, $\tau=8$ and $\epsilon=1$
R code to reproduce the figure is available from \cite{hwum2018}.
}
\label{fig:rec_aH}
\end{figure}
%%---------------------------------(FIGURE)------------------------------------
%%---------------------------------(FIGURE)-------------------------------------
\begin{figure}[!h]
\centering
\includegraphics[width=1.0\textwidth]{rec_aV}
\caption{
{\bf REC values for vertical arm movements.}
REC values (representing \% of black dots in the RPs) for
20 participants performing VN and VF movements
with sensors HS01, RS01 and three smoothed-normalised axis
of GyroY (sg0zmuvGyroY, sg1zmuvGyroY and sg2zmuvGyroY).
REC values were computed with
embedding parameters $m=6$, $\tau=8$ and $\epsilon=1$.
R code to reproduce the figure is available from \cite{hwum2018}.
}
\label{fig:rec_aV}
\end{figure}
%%---------------------------------(FIGURE)------------------------------------


\subsection{DET values}
DET values, representing predictability and organisation of the RPs,
change very little even for type of movement and type of sensor
(Figs~\ref{fig:det_aH} and \ref{fig:det_aV}).
With regard to the smoothness of time series, DET values appear
to be more similar as the smoothness of the time series is increasing.
%%---------------------------------(FIGURE)-------------------------------------
\begin{figure}[!h]
\centering
\includegraphics[width=1.0\textwidth]{det_aH}
\caption{
{\bf DET values for horizontal arm movements.}
DET values (representing predictability and organisation of the RPs)
for 20 participants performing HN and HF movements
with sensors HS01, RS01 and three smoothed-normalised axis
of GyroZ (sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ).
DET values were computed with
embedding parameters $m=6$, $\tau=8$ and $\epsilon=1$.
R code to reproduce the figure is available from \cite{hwum2018}.
}
\label{fig:det_aH}
\end{figure}
%%---------------------------------(FIGURE)------------------------------------
%%---------------------------------(FIGURE)-------------------------------------
\begin{figure}[!h]
\centering
\includegraphics[width=1.0\textwidth]{det_aV}
\caption{
{\bf DET values for vertical arm movements.}
DET values (representing predictability and organisation of the RPs)
for 20 participants performing VN and VF movements
with sensors HS01, RS01 and three smoothed-normalised axis
of GyroY (sg0zmuvGyroY, sg1zmuvGyroY and sg2zmuvGyroY).
DET values were computed with
embedding parameters $m=6$, $\tau=8$ and $\epsilon=1$.
R code to reproduce the figure is available from \cite{hwum2018}.
}
\label{fig:det_aV}
\end{figure}
%%---------------------------------(FIGURE)------------------------------------



\subsection{RATIO values}
RATIO values, representing dynamic transitions, for both horizontal and
vertical movements (Figs~\ref{fig:ratio_aH} and \ref{fig:ratio_aV})
vary less for HN movements than HF movements for HS01 sensor
which is a similar behaviour of RATIO values for RS01 sensor.
It can also noticed a decrease of variation in RATIO values as the
smoothness of the time series is increasing.
%%---------------------------------(FIGURE)-------------------------------------
\begin{figure}[!h]
\centering
\includegraphics[width=1.0\textwidth]{ratio_aH}
\caption{
{\bf RATIO values for horizontal arm movements.}
RATIO (representing dynamic transitions) for
20 participants performing HN and HF movements
with sensors HS01, RS01 and three smoothed-normalised axis
of GyroZ (sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ).
RATIO values were computed with
embedding parameters $m=6$, $\tau=8$ and $\epsilon=1$.
R code to reproduce the figure is available from \cite{hwum2018}.
}
\label{fig:ratio_aH}
\end{figure}
%%---------------------------------(FIGURE)------------------------------------
%%---------------------------------(FIGURE)-------------------------------------
\begin{figure}[!h]
\centering
\includegraphics[width=1.0\textwidth]{ratio_aV}
\caption{
{\bf RATIO values for vertical arm movements.}
RATIO (representing dynamic transitions) for
20 participants performing VN and VF movements
with sensors HS01, RS01 and three smoothed-normalised axis
of GyroY (sg0zmuvGyroY, sg1zmuvGyroY and sg2zmuvGyroY).
RATIO values were computed with
embedding parameters $m=6$, $\tau=8$ and $\epsilon=1$.
R code to reproduce the figure is available from \cite{hwum2018}.
}
\label{fig:ratio_aV}
\end{figure}
%%---------------------------------(FIGURE)------------------------------------



\subsection{ENTR values}
ENTR values, representing the complexity of the deterministic structure
of the time series, for both horizontal and vertical movements
(Figs~\ref{fig:entr_aH} and \ref{fig:entr_aV}) show more variation
for HS01 sensor than ENTR values for RS01 sensor which appear
to be more constant.
Generally, it can also be said that the smoothness of time series affects
little to the variation of ENTR values.
%%---------------------------------(FIGURE)-------------------------------------
\begin{figure}[!h]
\centering
\includegraphics[width=1.0\textwidth]{entr_aH}
\caption{
{\bf ENTR values for horizontal arm movements.}
ENTR values (representing the complexity of the deterministic
structure in time series) for
20 participants performing HN and HF movements
with sensors HS01, RS01 and three smoothed-normalised axis
of GyroZ (sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ).
ENTR values were computed with
embedding parameters $m=6$, $\tau=8$ and $\epsilon=1$.
R code to reproduce the figure is available from \cite{hwum2018}.
}
\label{fig:entr_aH}
\end{figure}
%%---------------------------------(FIGURE)------------------------------------
%%---------------------------------(FIGURE)-------------------------------------
\begin{figure}[!h]
\centering
\includegraphics[width=1.0\textwidth]{entr_aV}
\caption{
{\bf ENTR values for vertical arm movements.}
ENTR values (representing the complexity of the deterministic
structure in time series) for
20 participants performing VN and VF movements
with sensors HS01, RS01 and three smoothed-normalised axis
of GyroY (sg0zmuvGyroY, sg1zmuvGyroY and sg2zmuvGyroY).
ENTR values were computed with
embedding parameters $m=6$, $\tau=8$ and $\epsilon=1$.
R code to reproduce the figure is available from \cite{hwum2018}.
}
\label{fig:entr_aV}
\end{figure}
%%---------------------------------(FIGURE)------------------------------------





2 changes: 1 addition & 1 deletion chapter1/README.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@



* [ ] Update Structure of the thesis
* [ ] Update IMAGE for Structure of the thesis

added: Fri 7 Sep 13:49:41 BST 2018

Expand Down
Loading

0 comments on commit 214b455

Please sign in to comment.