Skip to content

naruto678/free-spoken-digit-dataset

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Free Spoken Digit Dataset (FSDD)

DOI

A simple audio/speech dataset consisting of recordings of spoken digits in wav files at 8kHz. The recordings are trimmed so that they have near minimal silence at the beginnings and ends.

FSDD is an open dataset, which means it will grow over time as data is contributed. Thus in order to enable reproducibility and accurate citation in scientific journals the dataset is versioned using git tags.

Current status

  • 3 speakers
  • 1,500 recordings (50 of each digit per speaker)
  • English pronunciations

Organization

Files are named in the following format: {digitLabel}_{speakerName}_{index}.wav Example: 7_jackson_32.wav

Contributions

Please contribute your homemade recordings. All recordings should be mono 8kHz wav files and be trimmed to have minimal silence. Don't forget to update metadata.py with the speaker meta-data.

To add your data, follow the recording instructions in acquire_data/say_numbers_prompt.py and then run split_and_label_numbers.py to make your files.

Metadata

metadata.py contains meta-data regarding the speakers gender and accents.

Included utilities

trimmer.py Trims silences at beginning and end of an audio file. Splits an audio file into multiple audio files by periods of silence.

fsdd.py A simple class that provides an easy to use API to access the data.

spectogramer.py Used for creating spectrograms of the audio data. Spectrograms are often a useful pre-processing step.

Usage

The test set officially consists of the first 10% of the recordings. Recordings numbered 0-4 (inclusive) are in the test and 5-49 are in the training set.

Made with FSDD

Did you use FSDD in a paper, project or app? Add it here!

External tools

License

Creative Commons Attribution-ShareAlike 4.0 International

About

A free audio dataset of spoken digits. Think MNIST for audio.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%