-
Notifications
You must be signed in to change notification settings - Fork 0
/
gcn.py
175 lines (142 loc) · 6.57 KB
/
gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import dgl
import dgl.function as fn
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Union
import torch
from dgl import DGLGraph
gcn_msg=fn.copy_src(src="h",out="m")
gcn_reduce=fn.sum(msg="m",out="h")
class NodeApplyModule(nn.Module):
def __init__(self,in_feats,out_feats,activation):
super(NodeApplyModule,self).__init__()
self.linear=nn.Linear(in_feats,out_feats)
self.activation=activation
def forward(self, node):
h=self.linear(node.data["h"])
if self.activation is not None:
h=self.activation(h)
return {"h": h}
class GCN(nn.Module):
def __init__(self, in_feats, out_feats, activation):
super(GCN,self).__init__()
self.apply_mod=NodeApplyModule(in_feats,out_feats,activation)
def forward(self,g,feature):
g.ndata["h"]=feature
g.update_all(gcn_msg,gcn_reduce)
g.apply_nodes(func=self.apply_mod)
return g.ndata.pop("h")
class GCNNet(nn.Module):
def __init__(self, hdim, nlayers=2, dropout_prob=0.1):
super(GCNNet, self).__init__()
# self.gcns = nn.ModuleList([GCN(hdim, hdim, F.relu) for i in range(nlayers)])
feedfoward_input_dim, feedforward_hidden_dim, hidden_dim = hdim, hdim, hdim
self._gcn_layers = [GCN(hdim, hdim, F.relu) for _ in range(nlayers)]
self.nlayers = nlayers
self.linear = nn.Linear(hdim, hdim)
# self._feedfoward_layers = [FeedForward(feedfoward_input_dim,
# activations=[F.relu,
# nn.Linear(hdim, hdim, bias=True)],
# hidden_dims=[feedforward_hidden_dim, hidden_dim],
# num_layers=2,
# dropout=[dropout_prob, dropout_prob]) for _ in range(nlayers)]
self._layer_norm_layers = [nn.LayerNorm(hdim) for _ in range(nlayers)]
self._feed_forward_layer_norm_layers = [nn.LayerNorm(hdim) for _ in range(nlayers)]
self.dropout = nn.Dropout(dropout_prob)
self._input_dim = hdim
self._output_dim = hdim
def forward(self, g, features):
output = features
for i in range(self.nlayers):
gcn = self._gcn_layers[i]
# feedforward = self._feedfoward_layers[i]
feedforward_layer_norm = self._feed_forward_layer_norm_layers[i]
layer_norm = self._layer_norm_layers[i]
cached_input = output
feedforward_output = F.relu(self.linear(output))
feedforward_output = self.dropout(feedforward_output)
if feedforward_output.size() == cached_input.size():
feedforward_output = feedforward_layer_norm(feedforward_output + cached_input)
# shape (batch_size, sequence_length, hidden_dim)
attention_output = gcn(g, feedforward_output)
output = layer_norm(self.dropout(attention_output) + feedforward_output)
return output
class GCN_layers(nn.Module):
def __init__(self, hdim,
nlayers=2
):
super(GCN_layers, self).__init__()
self.GCNNet = GCNNet(hdim, nlayers, 0.1)
def transform_sent_rep(self, sent_rep, sent_mask, meta_field, key):
init_graphs = self.convert_sent_tensors_to_graphs(sent_rep, sent_mask, meta_field, key)
unpadated_graphs = []
for g in init_graphs:
updated_graph = self.forward(g)
unpadated_graphs.append(updated_graph)
recovered_sent = torch.stack(unpadated_graphs, dim=0)
assert recovered_sent.shape == sent_rep.shape
return recovered_sent
def forward(self, g):
h = g.ndata['h']
out = self.GCNNet.forward(g, features=h)
# return g, g.ndata['h'], hg # g is the raw graph, h is the node rep, and hg is the mean of all h
print(out)
return out
def get_input_dim(self) -> int:
return self.input_dim
def get_output_dim(self) -> int:
return self._output_dim
def is_bidirectional(self):
return False
class RGCNLayer(nn.Module):
def __init__(self, feat_size, num_rels, activation=None, gated = True):
super(RGCNLayer, self).__init__()
self.feat_size = feat_size
self.num_rels = num_rels
self.activation = activation
self.gated = gated
self.weight = nn.Parameter(torch.Tensor(self.num_rels, self.feat_size, self.feat_size))
# init trainable parameters
nn.init.xavier_uniform_(self.weight,gain=nn.init.calculate_gain('relu'))
if self.gated:
self.gate_weight = nn.Parameter(torch.Tensor(self.num_rels, self.feat_size, 1))
nn.init.xavier_uniform_(self.gate_weight,gain=nn.init.calculate_gain('sigmoid'))
def forward(self, g):
weight = self.weight
gate_weight = self.gate_weight
def message_func(edges):
w = weight[edges.data['rel_type']]
msg = torch.bmm(edges.src['h'].unsqueeze(1), w).squeeze()
msg = msg * edges.data['norm']
if self.gated:
gate_w = gate_weight[edges.data['rel_type']]
gate = torch.bmm(edges.src['h'].unsqueeze(1), gate_w).squeeze().reshape(-1,1)
gate = torch.sigmoid(gate)
msg = msg * gate
return {'msg': msg}
def apply_func(nodes):
h = nodes.data['h']
h = self.activation(h)
return {'h': h}
g.update_all(message_func, fn.sum(msg='msg', out='h'), apply_func)
class RGCNModel(nn.Module):
def __init__(self, h_dim, num_rels, num_hidden_layers=1, gated = True):
super(RGCNModel, self).__init__()
self.h_dim = h_dim
self.num_rels = num_rels
self.num_hidden_layers = num_hidden_layers
self.gated = gated
# create rgcn layers
self.build_model()
def build_model(self):
self.layers = nn.ModuleList()
for _ in range(self.num_hidden_layers):
rgcn_layer = RGCNLayer(self.h_dim, self.num_rels, activation=F.relu, gated = self.gated)
self.layers.append(rgcn_layer)
def forward(self, g):
for layer in self.layers:
layer(g)
rst_hidden = []
for sub_g in dgl.unbatch(g):
rst_hidden.append(sub_g.ndata['h'])
return rst_hidden