Skip to content

negargoli/ReSprop

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ReSprop

This repository enables the reproduction of the experiments described in the CVPR 2020 paper:

ReSprop: Reuse Sparsified Backpropagation

Negar Goli, Tor M. Aamodt

Link to our ReSprop paper in CVPR2020 Oral

ReSprop Demo

Requirements

  • Python 3.7.5

  • torch 1.1.0

  • torchvision

  • cuda 10

  • gcc 7.5.0

Prerequisites

The code uses the custom C++ and cuda extensions of pytorch. CUSTOM C++ Pytorch

The c++ code is availabe in backward folder.

Build the costum c++ backward functions in the backward folder:

python setup.py install 

Download ImageNet dataset and use uncropped data

Running the Algorithm

The algorithm can be run on up to 8 GPUs

-a : Architecture --iterations: Number of iterations --sparsity: targeted reuse_sparsity --warmup: 1 means with warmup phase, 0 without

Example: ImageNet on resnet18 with 80% reuse sparsity and with warmup (100-80=20%).

python main_ImageNet.py -a resnet18 --sparsity 20  --warmup 1 PATH_TO_THE_IMAGENET_DATASET

Code explanation

ReSprop_conv.py is a costum convolution python kernel which includes the main part of ReSprop algorithm.

Training time

Please note that this code is showing the functionality of ReSprop algorithm and to gain the speedup a hardware accelerator is required.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published