Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

pageserver: reorder upload queue when possible #10218

Draft
wants to merge 1 commit into
base: erik/assert-upload-index
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
96 changes: 19 additions & 77 deletions pageserver/src/tenant/remote_timeline_client.rs
Original file line number Diff line number Diff line change
Expand Up @@ -63,18 +63,22 @@
//! The contract between client and its user is that the user is responsible of
//! scheduling operations in an order that keeps the remote consistent as
//! described above.
//!
//! From the user's perspective, the operations are executed sequentially.
//! Internally, the client knows which operations can be performed in parallel,
//! and which operations act like a "barrier" that require preceding operations
//! to finish. The calling code just needs to call the schedule-functions in the
//! correct order, and the client will parallelize the operations in a way that
//! is safe.
//! is safe. For more details, see `UploadOp::can_bypass`.
//!
//! The caller should be careful with deletion, though. They should not delete
//! local files that have been scheduled for upload but not yet finished uploading.
//! Otherwise the upload will fail. To wait for an upload to finish, use
//! the 'wait_completion' function (more on that later.)
//!
//! (TODO: the above isn't accurate with the introduction of `UploadOp::can_bypass`,
//! consider removing it as well as `wait_completion`)
//!
//! All of this relies on the following invariants:
//!
//! - We rely on read-after write consistency in the remote storage.
Expand Down Expand Up @@ -1797,57 +1801,16 @@ impl RemoteTimelineClient {
Ok(())
}

///
/// Pick next tasks from the queue, and start as many of them as possible without violating
/// the ordering constraints.
///
/// The caller needs to already hold the `upload_queue` lock.
/// TODO: consider limiting the number of in-progress tasks, beyond what remote_storage does,
/// to avoid tenants starving other tenants.
fn launch_queued_tasks(self: &Arc<Self>, upload_queue: &mut UploadQueueInitialized) {
while let Some(next_op) = upload_queue.queued_operations.front() {
// Can we run this task now?
let can_run_now = match next_op {
UploadOp::UploadLayer(..) => {
// Can always be scheduled.
true
}
UploadOp::UploadMetadata { .. } => {
// These can only be performed after all the preceding operations
// have finished.
upload_queue.inprogress_tasks.is_empty()
}
UploadOp::Delete(..) => {
// Wait for preceding uploads to finish. Concurrent deletions are OK, though.
upload_queue.num_inprogress_deletions == upload_queue.inprogress_tasks.len()
}

UploadOp::Barrier(_) | UploadOp::Shutdown => {
upload_queue.inprogress_tasks.is_empty()
}
};

// If we cannot launch this task, don't look any further.
//
// In some cases, we could let some non-frontmost tasks to "jump the queue" and launch
// them now, but we don't try to do that currently. For example, if the frontmost task
// is an index-file upload that cannot proceed until preceding uploads have finished, we
// could still start layer uploads that were scheduled later.
if !can_run_now {
break;
}
while let Some(mut next_op) = upload_queue.next_ready() {
debug!("starting op: {next_op}");

if let UploadOp::Shutdown = next_op {
// leave the op in the queue but do not start more tasks; it will be dropped when
// the stop is called.
upload_queue.shutdown_ready.close();
break;
}

// We can launch this task. Remove it from the queue first.
let mut next_op = upload_queue.queued_operations.pop_front().unwrap();

debug!("starting op: {}", next_op);

// Update the counters and prepare
// Prepare upload.
match &mut next_op {
UploadOp::UploadLayer(layer, meta, mode) => {
if upload_queue
Expand All @@ -1858,18 +1821,14 @@ impl RemoteTimelineClient {
} else {
*mode = Some(OpType::MayReorder)
}
upload_queue.num_inprogress_layer_uploads += 1;
}
UploadOp::UploadMetadata { .. } => {
upload_queue.num_inprogress_metadata_uploads += 1;
}
UploadOp::UploadMetadata { .. } => {}
UploadOp::Delete(Delete { layers }) => {
for (name, meta) in layers {
upload_queue
.recently_deleted
.insert((name.clone(), meta.generation));
}
upload_queue.num_inprogress_deletions += 1;
}
UploadOp::Barrier(sender) => {
sender.send_replace(());
Expand Down Expand Up @@ -1967,6 +1926,8 @@ impl RemoteTimelineClient {

let upload_result: anyhow::Result<()> = match &task.op {
UploadOp::UploadLayer(ref layer, ref layer_metadata, mode) => {
// TODO: check if this mechanism can be removed now that can_bypass() performs
// conflict checks during scheduling.
if let Some(OpType::FlushDeletion) = mode {
if self.config.read().unwrap().block_deletions {
// Of course, this is not efficient... but usually the queue should be empty.
Expand Down Expand Up @@ -2189,13 +2150,8 @@ impl RemoteTimelineClient {
upload_queue.inprogress_tasks.remove(&task.task_id);

let lsn_update = match task.op {
UploadOp::UploadLayer(_, _, _) => {
upload_queue.num_inprogress_layer_uploads -= 1;
None
}
UploadOp::UploadLayer(_, _, _) => None,
UploadOp::UploadMetadata { ref uploaded } => {
upload_queue.num_inprogress_metadata_uploads -= 1;

// the task id is reused as a monotonicity check for storing the "clean"
// IndexPart.
let last_updater = upload_queue.clean.1;
Expand Down Expand Up @@ -2229,10 +2185,7 @@ impl RemoteTimelineClient {
None
}
}
UploadOp::Delete(_) => {
upload_queue.num_inprogress_deletions -= 1;
None
}
UploadOp::Delete(_) => None,
UploadOp::Barrier(..) | UploadOp::Shutdown => unreachable!(),
};

Expand Down Expand Up @@ -2356,9 +2309,6 @@ impl RemoteTimelineClient {
visible_remote_consistent_lsn: initialized
.visible_remote_consistent_lsn
.clone(),
num_inprogress_layer_uploads: 0,
num_inprogress_metadata_uploads: 0,
num_inprogress_deletions: 0,
inprogress_tasks: HashMap::default(),
queued_operations: VecDeque::default(),
#[cfg(feature = "testing")]
Expand All @@ -2385,14 +2335,6 @@ impl RemoteTimelineClient {
}
};

// consistency check
assert_eq!(
qi.num_inprogress_layer_uploads
+ qi.num_inprogress_metadata_uploads
+ qi.num_inprogress_deletions,
qi.inprogress_tasks.len()
);

// We don't need to do anything here for in-progress tasks. They will finish
// on their own, decrement the unfinished-task counter themselves, and observe
// that the queue is Stopped.
Expand Down Expand Up @@ -2852,8 +2794,8 @@ mod tests {
let mut guard = client.upload_queue.lock().unwrap();
let upload_queue = guard.initialized_mut().unwrap();
assert!(upload_queue.queued_operations.is_empty());
assert!(upload_queue.inprogress_tasks.len() == 2);
assert!(upload_queue.num_inprogress_layer_uploads == 2);
assert_eq!(upload_queue.inprogress_tasks.len(), 2);
assert_eq!(upload_queue.num_inprogress_layer_uploads(), 2);

// also check that `latest_file_changes` was updated
assert!(upload_queue.latest_files_changes_since_metadata_upload_scheduled == 2);
Expand Down Expand Up @@ -2923,8 +2865,8 @@ mod tests {
// Deletion schedules upload of the index file, and the file deletion itself
assert_eq!(upload_queue.queued_operations.len(), 2);
assert_eq!(upload_queue.inprogress_tasks.len(), 1);
assert_eq!(upload_queue.num_inprogress_layer_uploads, 1);
assert_eq!(upload_queue.num_inprogress_deletions, 0);
assert_eq!(upload_queue.num_inprogress_layer_uploads(), 1);
assert_eq!(upload_queue.num_inprogress_deletions(), 0);
assert_eq!(
upload_queue.latest_files_changes_since_metadata_upload_scheduled,
0
Expand Down
Loading
Loading