Skip to content
This repository has been archived by the owner on Oct 11, 2024. It is now read-only.

Commit

Permalink
[Kernel] Adding bias epilogue support for cutlass_scaled_mm (vllm-p…
Browse files Browse the repository at this point in the history
…roject#5560)

Co-authored-by: Chih-Chieh-Yang <[email protected]>
Co-authored-by: Lucas Wilkinson <[email protected]>
  • Loading branch information
3 people authored and robertgshaw2-neuralmagic committed Jul 1, 2024
1 parent 74952fd commit 1d1929b
Show file tree
Hide file tree
Showing 8 changed files with 383 additions and 134 deletions.
3 changes: 2 additions & 1 deletion CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,8 @@ cmake_minimum_required(VERSION 3.21)

project(vllm_extensions LANGUAGES CXX)

option(VLLM_TARGET_DEVICE "Target device backend for vLLM" "cuda")
# CUDA by default, can be overridden by using -DVLLM_TARGET_DEVICE=... (used by setup.py)
set(VLLM_TARGET_DEVICE "cuda" CACHE STRING "Target device backend for vLLM")

message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
message(STATUS "Target device: ${VLLM_TARGET_DEVICE}")
Expand Down
3 changes: 2 additions & 1 deletion csrc/ops.h
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,8 @@ bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability);

void cutlass_scaled_mm(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b, torch::Tensor const& a_scales,
torch::Tensor const& b_scales);
torch::Tensor const& b_scales,
c10::optional<torch::Tensor> const& bias);

#endif

Expand Down
228 changes: 170 additions & 58 deletions csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu
Original file line number Diff line number Diff line change
Expand Up @@ -77,31 +77,45 @@ struct enable_sm89_to_sm90 : Kernel {
};

/*
This epilogue function defines a quantized GEMM operation similar to
torch._scaled_mm.
A and B may be both either int8 or fp8_e4m3. A can be quantized per-tensor or
per-row. B can be quantized per-tensor or per-column.
Any combination of per-tensor and per-row or column is supported.
A and B must have symmetric quantization (zero point == 0).
So the GEMM operation is D = (a_scales * A) (b_scales * B), where the
scales are applied elementwise with numpy-style broadcasting.
ScaleA and ScaleB define the epilogue functions that apply the scales for
the A and B operands respectively. These scales may be either per-tensor or
per row or column.
*/
* This class provides the common ScaleA and ScaleB descriptors for the
* ScaledEpilogue and ScaledEpilogueBias classes.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogue {
private:
struct ScaledEpilogueBase {
protected:
using Accum = cutlass::epilogue::threadblock::VisitorAccFetch;

using ScaleA = cutlass::epilogue::threadblock::VisitorColOrScalarBroadcast<
OutputTileThreadMap, float, Stride<Int<1>, Int<0>, Int<0>>>;

using ScaleB = cutlass::epilogue::threadblock::VisitorRowOrScalarBroadcast<
OutputTileThreadMap, float, Stride<Int<0>, Int<1>, Int<0>>>;
};

/*
This epilogue function defines a quantized GEMM operation similar to
torch._scaled_mm.
A and B may be both either int8 or fp8_e4m3. A can be quantized per-tensor or
per-row. B can be quantized per-tensor or per-column.
Any combination of per-tensor and per-row or column is supported.
A and B must have symmetric quantization (zero point == 0).
So the GEMM operation is D = (a_scales * A) (b_scales * B), where the
scales are applied elementwise with numpy-style broadcasting.
ScaleA and ScaleB define the epilogue functions that apply the scales for
the A and B operands respectively. These scales may be either per-tensor or
per row or column.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogue
: private ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::ScaleA;
using ScaleB = typename SUPER::ScaleB;

using Compute0 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
Expand Down Expand Up @@ -134,6 +148,53 @@ struct ScaledEpilogue {
}
};

template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBias
: private ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::ScaleA;
using ScaleB = typename SUPER::ScaleB;

using Compute0 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;

using EVTCompute0 =
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;

using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;

using Bias = cutlass::epilogue::threadblock::VisitorRowBroadcast<
OutputTileThreadMap, ElementD, Stride<Int<0>, Int<1>, Int<0>>>;

public:
using EVTCompute = cutlass::epilogue::threadblock::Sm80EVT<Compute1, ScaleA,
EVTCompute0, Bias>;
using ArgumentType = typename EVTCompute::Arguments;

static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& bias) {
using ScaleAArgs = typename ScaleA::Arguments;
using ScaleBArgs = typename ScaleB::Arguments;
using BiasArgs = typename Bias::Arguments;

ScaleBArgs b_args{b_scales.data_ptr<float>(), b_scales.numel() != 1, {}};
ScaleAArgs a_args{a_scales.data_ptr<float>(), a_scales.numel() != 1, {}};
BiasArgs bias_args{static_cast<ElementD*>(bias.data_ptr()), {}};

typename EVTCompute0::Arguments evt0_compute_args{b_args};

typename EVTCompute::Arguments evt_compute_args{a_args, evt0_compute_args,
bias_args};
return evt_compute_args;
}
};

template <typename Arch, template <typename> typename ArchGuard,
typename ElementAB_, typename ElementD_,
template <typename, typename> typename Epilogue_, typename TileShape,
Expand Down Expand Up @@ -168,13 +229,13 @@ struct cutlass_2x_gemm {
// clang-format off
using RowMajor = typename cutlass::layout::RowMajor;
using ColumnMajor = typename cutlass::layout::ColumnMajor;
using KernelType =
using KernelType =
ArchGuard<typename cutlass::gemm::kernel::DefaultGemmWithVisitor<
ElementAB, RowMajor, cutlass::ComplexTransform::kNone, 16,
ElementAB, ColumnMajor, cutlass::ComplexTransform::kNone, 16,
ElementAB, RowMajor, cutlass::ComplexTransform::kNone, 16,
ElementAB, ColumnMajor, cutlass::ComplexTransform::kNone, 16,
float, cutlass::layout::RowMajor, 4,
ElementAcc, float, cutlass::arch::OpClassTensorOp,
Arch,
ElementAcc, float, cutlass::arch::OpClassTensorOp,
Arch,
TileShape, WarpShape, InstructionShape,
EVTD,
cutlass::gemm::threadblock::ThreadblockSwizzleStreamK,
Expand Down Expand Up @@ -404,14 +465,13 @@ void cutlass_gemm_sm80_dispatch(torch::Tensor& out, torch::Tensor const& a,
}
}

void cutlass_scaled_mm_sm75(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
template <template <typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_scaled_mm_sm75_epilogue(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... epilogue_args) {
TORCH_CHECK(a.dtype() == torch::kInt8);
TORCH_CHECK(b.dtype() == torch::kInt8);
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);

using TileShape = typename cutlass::gemm::GemmShape<128, 128, 64>;
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
Expand All @@ -420,78 +480,130 @@ void cutlass_scaled_mm_sm75(torch::Tensor& out, torch::Tensor const& a,
if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_caller<cutlass_2x_gemm<
cutlass::arch::Sm75, enable_sm75_to_sm80, int8_t, cutlass::bfloat16_t,
ScaledEpilogue, TileShape, WarpShape, InstructionShape, 2>>(
out, a, b, a_scales, b_scales);
Epilogue, TileShape, WarpShape, InstructionShape, 2>>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return cutlass_gemm_caller<cutlass_2x_gemm<
cutlass::arch::Sm75, enable_sm75_to_sm80, int8_t, cutlass::half_t,
ScaledEpilogue, TileShape, WarpShape, InstructionShape, 2>>(
out, a, b, a_scales, b_scales);
Epilogue, TileShape, WarpShape, InstructionShape, 2>>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
}
}

void cutlass_scaled_mm_sm80(torch::Tensor& out, torch::Tensor const& a,
void cutlass_scaled_mm_sm75(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
TORCH_CHECK(a.dtype() == torch::kInt8);
TORCH_CHECK(b.dtype() == torch::kInt8);
torch::Tensor const& b_scales,
c10::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
if (bias) {
TORCH_CHECK(bias->dtype() == out.dtype(),
"currently bias dtype must match output dtype ", out.dtype());
return cutlass_scaled_mm_sm75_epilogue<ScaledEpilogueBias>(
out, a, b, a_scales, b_scales, *bias);
} else {
return cutlass_scaled_mm_sm75_epilogue<ScaledEpilogue>(out, a, b, a_scales,
b_scales);
}
}

template <template <typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_scaled_mm_sm80_epilogue(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... epilogue_args) {
TORCH_CHECK(a.dtype() == torch::kInt8);
TORCH_CHECK(b.dtype() == torch::kInt8);

if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_sm80_dispatch<int8_t, cutlass::bfloat16_t,
ScaledEpilogue>(out, a, b, a_scales,
b_scales);
return cutlass_gemm_sm80_dispatch<int8_t, cutlass::bfloat16_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return cutlass_gemm_sm80_dispatch<int8_t, cutlass::half_t, ScaledEpilogue>(
out, a, b, a_scales, b_scales);
return cutlass_gemm_sm80_dispatch<int8_t, cutlass::half_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
}
}

void cutlass_scaled_mm_sm89(torch::Tensor& out, torch::Tensor const& a,
void cutlass_scaled_mm_sm80(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
torch::Tensor const& b_scales,
c10::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
if (bias) {
TORCH_CHECK(bias->dtype() == out.dtype(),
"currently bias dtype must match output dtype ", out.dtype());
return cutlass_scaled_mm_sm80_epilogue<ScaledEpilogueBias>(
out, a, b, a_scales, b_scales, *bias);
} else {
return cutlass_scaled_mm_sm80_epilogue<ScaledEpilogue>(out, a, b, a_scales,
b_scales);
}
}

template <template <typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_scaled_mm_sm89_epilogue(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... epilogue_args) {
using TileShape = typename cutlass::gemm::GemmShape<128, 128, 64>;
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;

TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);

if (a.dtype() == torch::kInt8) {
TORCH_CHECK(b.dtype() == torch::kInt8);

if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_caller<cutlass_2x_gemm<
cutlass::arch::Sm89, enable_sm89_to_sm90, int8_t, cutlass::bfloat16_t,
ScaledEpilogue, TileShape, WarpShape, InstructionShape, 5>>(
out, a, b, a_scales, b_scales);
Epilogue, TileShape, WarpShape, InstructionShape, 5>>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else {
assert(out.dtype() == torch::kFloat16);
return cutlass_gemm_caller<cutlass_2x_gemm<
cutlass::arch::Sm89, enable_sm89_to_sm90, int8_t, cutlass::half_t,
ScaledEpilogue, TileShape, WarpShape, InstructionShape, 5>>(
out, a, b, a_scales, b_scales);
Epilogue, TileShape, WarpShape, InstructionShape, 5>>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
}
} else {
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);

if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_caller<cutlass_2x_gemm<
cutlass::arch::Sm89, enable_sm89_to_sm90, cutlass::float_e4m3_t,
cutlass::bfloat16_t, ScaledEpilogue, TileShape, WarpShape,
InstructionShape, 5>>(out, a, b, a_scales, b_scales);
return cutlass_gemm_caller<
cutlass_2x_gemm<cutlass::arch::Sm89, enable_sm89_to_sm90,
cutlass::float_e4m3_t, cutlass::bfloat16_t, Epilogue,
TileShape, WarpShape, InstructionShape, 5>>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return cutlass_gemm_caller<cutlass_2x_gemm<
cutlass::arch::Sm89, enable_sm89_to_sm90, cutlass::float_e4m3_t,
cutlass::half_t, ScaledEpilogue, TileShape, WarpShape,
InstructionShape, 5>>(out, a, b, a_scales, b_scales);
return cutlass_gemm_caller<
cutlass_2x_gemm<cutlass::arch::Sm89, enable_sm89_to_sm90,
cutlass::float_e4m3_t, cutlass::half_t, Epilogue,
TileShape, WarpShape, InstructionShape, 5>>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
}
}
}

void cutlass_scaled_mm_sm89(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
c10::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
if (bias) {
TORCH_CHECK(bias->dtype() == out.dtype(),
"currently bias dtype must match output dtype ", out.dtype());
return cutlass_scaled_mm_sm89_epilogue<ScaledEpilogueBias>(
out, a, b, a_scales, b_scales, *bias);
} else {
return cutlass_scaled_mm_sm89_epilogue<ScaledEpilogue>(out, a, b, a_scales,
b_scales);
}
}
Loading

0 comments on commit 1d1929b

Please sign in to comment.