forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Model] Support telechat2 (vllm-project#10311)
Signed-off-by: Isotr0py <[email protected]> Co-authored-by: xiangw2 <[email protected]> Co-authored-by: Isotr0py <[email protected]> Signed-off-by: Andrew Feldman <[email protected]>
- Loading branch information
1 parent
57485ba
commit e255262
Showing
8 changed files
with
210 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
# Copyright 2023 The vLLM team. | ||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. | ||
# | ||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | ||
# and OPT implementations in this library. It has been modified from its | ||
# original forms to accommodate minor architectural differences compared | ||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
from typing import Iterable, Set, Tuple | ||
|
||
import torch | ||
|
||
from vllm.config import VllmConfig | ||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader | ||
from vllm.model_executor.models.llama import LlamaForCausalLM, LlamaModel | ||
|
||
from .utils import (AutoWeightsLoader, PPMissingLayer, WeightsMapper, | ||
is_pp_missing_parameter) | ||
|
||
|
||
class TeleChat2Model(LlamaModel): | ||
|
||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): | ||
# 1. Initialize the LlamaModel with bias | ||
vllm_config.model_config.hf_config.bias = True | ||
vllm_config.model_config.hf_config.mlp_bias = True | ||
super().__init__(vllm_config=vllm_config, prefix=prefix) | ||
# 2. Remove the bias from the qkv_proj and gate_up_proj based on config | ||
# Telechat2's gate_up_proj and qkv_proj don't have bias | ||
# see: https://github.com/vllm-project/vllm/pull/10311#issuecomment-2490297566 | ||
for layer in self.layers: | ||
if not isinstance(layer, PPMissingLayer): | ||
layer.self_attn.qkv_proj.bias = None | ||
layer.self_attn.qkv_proj.skip_bias_add = True | ||
layer.mlp.gate_up_proj.bias = None | ||
layer.mlp.gate_up_proj.skip_bias_add = True | ||
|
||
def load_weights(self, weights: Iterable[Tuple[str, | ||
torch.Tensor]]) -> Set[str]: | ||
stacked_params_mapping = [ | ||
('gate_up_proj', 'gate_proj', 0), | ||
('gate_up_proj', 'up_proj', 1), | ||
] | ||
params_dict = dict(self.named_parameters()) | ||
loaded_params: Set[str] = set() | ||
total_num_heads = self.config.n_head | ||
head_dim = self.config.hidden_size // total_num_heads | ||
for name, loaded_weight in weights: | ||
if "self_attn.key_value" in name: | ||
k_weight = [] | ||
v_weight = [] | ||
for i in range(total_num_heads): | ||
start = i * head_dim * 2 | ||
k_weight.append(loaded_weight[start:start + head_dim, :]) | ||
v_weight.append(loaded_weight[start + head_dim:start + | ||
2 * head_dim:]) | ||
k_weight = torch.cat(k_weight, dim=0) | ||
v_weight = torch.cat(v_weight, dim=0) | ||
name = name.replace("key_value", "qkv_proj") | ||
if is_pp_missing_parameter(name, self): | ||
continue | ||
param = params_dict[name] | ||
weight_loader = param.weight_loader | ||
weight_loader(param, k_weight, "k") | ||
weight_loader(param, v_weight, "v") | ||
elif "query" in name: | ||
name = name.replace("query", "qkv_proj") | ||
if is_pp_missing_parameter(name, self): | ||
continue | ||
param = params_dict[name] | ||
weight_loader = param.weight_loader | ||
weight_loader(param, loaded_weight, "q") | ||
else: | ||
for param_name, weight_name, shard_id in stacked_params_mapping: | ||
if weight_name not in name: | ||
continue | ||
name = name.replace(weight_name, param_name) | ||
if is_pp_missing_parameter(name, self): | ||
continue | ||
param = params_dict[name] | ||
weight_loader = param.weight_loader | ||
weight_loader(param, loaded_weight, shard_id) | ||
break | ||
else: | ||
if is_pp_missing_parameter(name, self): | ||
continue | ||
param = params_dict[name] | ||
weight_loader = getattr(param, "weight_loader", | ||
default_weight_loader) | ||
weight_loader(param, loaded_weight) | ||
loaded_params.add(name) | ||
return loaded_params | ||
|
||
|
||
class TeleChat2ForCausalLM(LlamaForCausalLM): | ||
|
||
def _init_model(self, vllm_config: VllmConfig, prefix: str = ""): | ||
return TeleChat2Model(vllm_config=vllm_config, prefix=prefix) | ||
|
||
def load_weights(self, weights: Iterable[Tuple[str, | ||
torch.Tensor]]) -> Set[str]: | ||
|
||
hf_to_vllm_mapper = WeightsMapper( | ||
orig_to_new_prefix={ | ||
"transformer.": "model.", | ||
}, | ||
orig_to_new_substr={ | ||
".h.": ".layers.", | ||
".self_attention.": ".self_attn.", | ||
".word_embeddings.": ".embed_tokens.", | ||
".dense.": ".o_proj.", | ||
".ln_f.": ".norm.", | ||
}, | ||
) | ||
loader = AutoWeightsLoader( | ||
self, | ||
skip_prefixes=(["lm_head."] | ||
if self.config.tie_word_embeddings else None), | ||
) | ||
return loader.load_weights(weights, mapper=hf_to_vllm_mapper) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
# adapted from https://www.modelscope.cn/models/TeleAI/TeleChat2-3B/resolve/master/configuration_telechat2.py | ||
""" Telechat configuration compatible with LlamaConfig. """ | ||
|
||
from transformers.configuration_utils import PretrainedConfig | ||
|
||
|
||
class Telechat2Config(PretrainedConfig): | ||
|
||
model_type = "telechat" | ||
keys_to_ignore_at_inference = ["past_key_values"] | ||
attribute_map = { | ||
"num_hidden_layers": "n_layer", | ||
"num_attention_heads": "n_head", | ||
"intermediate_size": "ffn_hidden_size", | ||
"rms_norm_eps": "layer_norm_epsilon" | ||
} | ||
|
||
def __init__( | ||
self, | ||
vocab_size=160256, | ||
hidden_size=4096, | ||
n_layer=30, | ||
n_head=32, | ||
layer_norm_epsilon=1e-5, | ||
initializer_range=0.02, | ||
use_cache=True, | ||
bos_token_id=1, | ||
eos_token_id=2, | ||
apply_residual_connection_post_layernorm=False, | ||
hidden_dropout=0.0, | ||
attention_dropout=0.0, | ||
ffn_hidden_size=12288, | ||
training_seqlen=8192, | ||
logn=True, | ||
embed_layernorm=False, | ||
hidden_act="silu", | ||
**kwargs, | ||
): | ||
self.vocab_size = vocab_size | ||
n_embed = kwargs.pop("n_embed", None) | ||
self.hidden_size = hidden_size if n_embed is None else n_embed | ||
self.n_layer = n_layer | ||
self.n_head = n_head | ||
self.layer_norm_epsilon = layer_norm_epsilon | ||
self.initializer_range = initializer_range | ||
self.use_cache = use_cache | ||
self.apply_residual_connection_post_layernorm = ( | ||
apply_residual_connection_post_layernorm) | ||
self.hidden_dropout = hidden_dropout | ||
self.attention_dropout = attention_dropout | ||
self.bos_token_id = bos_token_id | ||
self.eos_token_id = eos_token_id | ||
self.logn = logn | ||
self.training_seqlen = training_seqlen | ||
self.embed_layernorm = embed_layernorm | ||
self.num_key_value_heads = kwargs.pop("num_key_value_heads", None) | ||
self.ffn_hidden_size = ffn_hidden_size | ||
self.hidden_act = hidden_act | ||
super().__init__(bos_token_id=bos_token_id, | ||
eos_token_id=eos_token_id, | ||
**kwargs) |