Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor nrn_mlh_gsort #2692

Merged
merged 5 commits into from
Jan 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
196 changes: 4 additions & 192 deletions src/ivoc/ivocvect.cpp
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
#include <../../nrnconf.h>

//#include <string.h>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cmath>
Expand Down Expand Up @@ -3875,198 +3876,9 @@ void Vector_reg() {
#endif
}

// hacked version of gsort from ../gnu/d_vec.cpp
// the transformation is that everything that used to be a double* becomes
// an int* and cmp(*arg1, *arg2) becomes cmp(vec[*arg1], vec[*arg2])
// I am not sure what to do about the BYTES_PER_WORD

// An adaptation of Schmidt's new quicksort

static inline void SWAP(int* A, int* B) {
int tmp = *A;
*A = *B;
*B = tmp;
}

/* This should be replaced by a standard ANSI macro. */
#define BYTES_PER_WORD 8
#define BYTES_PER_LONG 4

/* The next 4 #defines implement a very fast in-line stack abstraction. */

#define STACK_SIZE (BYTES_PER_WORD * BYTES_PER_LONG)
#define PUSH(LOW, HIGH) \
do { \
top->lo = LOW; \
top++->hi = HIGH; \
} while (0)
#define POP(LOW, HIGH) \
do { \
LOW = (--top)->lo; \
HIGH = top->hi; \
} while (0)
#define STACK_NOT_EMPTY (stack < top)

/* Discontinue quicksort algorithm when partition gets below this size.
This particular magic number was chosen to work best on a Sun 4/260. */
#define MAX_THRESH 4


/* Order size using quicksort. This implementation incorporates
four optimizations discussed in Sedgewick:

1. Non-recursive, using an explicit stack of pointer that
store the next array partition to sort. To save time, this
maximum amount of space required to store an array of
MAX_INT is allocated on the stack. Assuming a 32-bit integer,
this needs only 32 * sizeof (stack_node) == 136 bits. Pretty
cheap, actually.

2. Chose the pivot element using a median-of-three decision tree.
This reduces the probability of selecting a bad pivot value and
eliminates certain extraneous comparisons.

3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
insertion sort to order the MAX_THRESH items within each partition.
This is a big win, since insertion sort is faster for small, mostly
sorted array segements.

4. The larger of the two sub-partitions is always pushed onto the
stack first, with the algorithm then concentrating on the
smaller partition. This *guarantees* no more than log (n)
stack size is needed! */

int nrn_mlh_gsort(double* vec, int* base_ptr, int total_elems, int (*cmp)(double, double)) {
/* Stack node declarations used to store unfulfilled partition obligations. */
struct stack_node {
int* lo;
int* hi;
};
int pivot_buffer;
int max_thresh = MAX_THRESH;

if (total_elems > MAX_THRESH) {
int* lo = base_ptr;
int* hi = lo + (total_elems - 1);
int* left_ptr;
int* right_ptr;
stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */
stack_node* top = stack + 1;

while (STACK_NOT_EMPTY) {
{
int* pivot = &pivot_buffer;
{
/* Select median value from among LO, MID, and HI. Rearrange
LO and HI so the three values are sorted. This lowers the
probability of picking a pathological pivot value and
skips a comparison for both the LEFT_PTR and RIGHT_PTR. */

int* mid = lo + ((hi - lo) >> 1);

if (cmp(vec[*mid], vec[*lo]) < 0)
SWAP(mid, lo);
if (cmp(vec[*hi], vec[*mid]) < 0) {
SWAP(mid, hi);
if (cmp(vec[*mid], vec[*lo]) < 0)
SWAP(mid, lo);
}
*pivot = *mid;
pivot = &pivot_buffer;
}
left_ptr = lo + 1;
right_ptr = hi - 1;

/* Here's the famous ``collapse the walls'' section of quicksort.
Gotta like those tight inner loops! They are the main reason
that this algorithm runs much faster than others. */
do {
while (cmp(vec[*left_ptr], vec[*pivot]) < 0)
left_ptr += 1;

while (cmp(vec[*pivot], vec[*right_ptr]) < 0)
right_ptr -= 1;

if (left_ptr < right_ptr) {
SWAP(left_ptr, right_ptr);
left_ptr += 1;
right_ptr -= 1;
} else if (left_ptr == right_ptr) {
left_ptr += 1;
right_ptr -= 1;
break;
}
} while (left_ptr <= right_ptr);
}

/* Set up pointers for next iteration. First determine whether
left and right partitions are below the threshold size. If so,
ignore one or both. Otherwise, push the larger partition's
bounds on the stack and continue sorting the smaller one. */

if ((right_ptr - lo) <= max_thresh) {
if ((hi - left_ptr) <= max_thresh) /* Ignore both small partitions. */
POP(lo, hi);
else /* Ignore small left partition. */
lo = left_ptr;
} else if ((hi - left_ptr) <= max_thresh) /* Ignore small right partition. */
hi = right_ptr;
else if ((right_ptr - lo) > (hi - left_ptr)) /* Push larger left partition indices. */
{
PUSH(lo, right_ptr);
lo = left_ptr;
} else /* Push larger right partition indices. */
{
PUSH(left_ptr, hi);
hi = right_ptr;
}
}
}

/* Once the BASE_PTR array is partially sorted by quicksort the rest
is completely sorted using insertion sort, since this is efficient
for partitions below MAX_THRESH size. BASE_PTR points to the beginning
of the array to sort, and END_PTR points at the very last element in
the array (*not* one beyond it!). */


{
int* end_ptr = base_ptr + 1 * (total_elems - 1);
int* run_ptr;
int* tmp_ptr = base_ptr;
int* thresh = (end_ptr < (base_ptr + max_thresh)) ? end_ptr : (base_ptr + max_thresh);

/* Find smallest element in first threshold and place it at the
array's beginning. This is the smallest array element,
and the operation speeds up insertion sort's inner loop. */

for (run_ptr = tmp_ptr + 1; run_ptr <= thresh; run_ptr += 1)
if (cmp(vec[*run_ptr], vec[*tmp_ptr]) < 0)
tmp_ptr = run_ptr;

if (tmp_ptr != base_ptr)
SWAP(tmp_ptr, base_ptr);

/* Insertion sort, running from left-hand-side up to `right-hand-side.'
Pretty much straight out of the original GNU qsort routine. */

for (run_ptr = base_ptr + 1; (tmp_ptr = run_ptr += 1) <= end_ptr;) {
while (cmp(vec[*run_ptr], vec[*(tmp_ptr -= 1)]) < 0)
;

if ((tmp_ptr += 1) != run_ptr) {
int* trav;

for (trav = run_ptr + 1; --trav >= run_ptr;) {
int c = *trav;
int *hi, *lo;

for (hi = lo = trav; (lo -= 1) >= tmp_ptr; hi = lo)
*hi = *lo;
*hi = c;
}
}
}
}
std::sort(base_ptr, base_ptr + total_elems, [&](int a, int b) {
return cmp(vec[a], vec[b]) < 0;
});
return 1;
}
1 change: 1 addition & 0 deletions test/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ add_executable(
testneuron
common/catch2_main.cpp
unit_tests/basic.cpp
unit_tests/iovec.cpp
unit_tests/container/container.cpp
unit_tests/container/generic_data_handle.cpp
unit_tests/container/mechanism.cpp
Expand Down
45 changes: 45 additions & 0 deletions test/unit_tests/iovec.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
#include <algorithm>
#include <vector>

#include "oc_ansi.h"

#include <catch2/catch.hpp>

// This function is the one that is used in all nrn-modeldb-ci
// Keep as is
int cmpdfn(double a, double b) {
return ((a) <= (b)) ? (((a) == (b)) ? 0 : -1) : 1;
1uc marked this conversation as resolved.
Show resolved Hide resolved
}

TEST_CASE("Test nrn_mlh_gsort output", "[nrn_gsort]") {
std::vector<double> input{1.2, -2.5, 5.1};

{
std::vector<int> indices(input.size());
// all values from 0 to size - 1
std::iota(indices.begin(), indices.end(), 0);

// for comparison
auto sorted_input = input;
std::sort(sorted_input.begin(), sorted_input.end());

SECTION("Test sorting") {
nrn_mlh_gsort(input.data(), indices.data(), input.size(), cmpdfn);
for (auto i = 0; i < input.size(); ++i) {
REQUIRE(sorted_input[i] == input[indices[i]]);
}
}
}

{
std::vector<int> indices{2, 1, 1};
std::vector<int> expected_result{1, 1, 2}; // as -2,5 < 5.1

SECTION("Test sorting with repeated indices") {
nrn_mlh_gsort(input.data(), indices.data(), input.size(), cmpdfn);
for (auto i = 0; i < input.size(); ++i) {
REQUIRE(indices[i] == expected_result[i]);
}
}
}
}
Loading