Skip to content

Commit

Permalink
Updated readme links
Browse files Browse the repository at this point in the history
  • Loading branch information
nfmcclure committed Jul 7, 2016
1 parent 53b3949 commit 1a1253c
Show file tree
Hide file tree
Showing 6 changed files with 62 additions and 152 deletions.
16 changes: 8 additions & 8 deletions 03_Linear_Regression/readme.md
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
# Ch 3: Linear Regression

1. [Using the Matrix Inverse Method](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/01_lin_reg_inverse.py)
2. [Implementing a Decomposition Method](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/02_lin_reg_decomposition.py)
3. [Learning the Tensorflow Way of Linear Regression](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/03_lin_reg_tensorflow_way.py)
4. [Understanding Loss Functions in Linear Regression](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/04_lin_reg_l1_vs_l2.py)
5. [Implementing Deming Regression (Total Regression)](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/05_deming_regression.py)
6. [Implementing Lasso and Ridge Regression](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/06_lasso_and_ridge_regression.py)
7. [Implementing Elastic Net Regression](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/07_elasticnet_regression.py)
8. [Implementing Logistic Regression](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/08_logistic_regression.py)
1. [Using the Matrix Inverse Method](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/01_Using_the_Matrix_Inverse_Method)
2. [Implementing a Decomposition Method](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/02_Implementing_a_Decomposition_Method)
3. [Learning the Tensorflow Way of Linear Regression](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/03_Tensorflow_Way_of_Linear_Regression)
4. [Understanding Loss Functions in Linear Regression](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/04_Loss_Functions_in_Linear_Regressions)
5. [Implementing Deming Regression (Total Regression)](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/05_Implementing_Deming_Regression)
6. [Implementing Lasso and Ridge Regression](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/06_Implementing_Lasso_and_Ridge_Regression)
7. [Implementing Elastic Net Regression](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/07_Implementing_Elasticnet_Regression)
8. [Implementing Logistic Regression](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/08_Implementing_Logistic_Regression)
12 changes: 6 additions & 6 deletions 04_Support_Vector_Machines/readme.md
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
# Ch 4: Support Vector Machines

1. Introduction
2. [Working with Linear SVMs](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/04_Support_Vector_Machines/01_linear_svm.py)
3. [Reduction to Linear Regression](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/04_Support_Vector_Machines/02_support_vector_regression.py)
4. [Working with Kernels in Tensorflow](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/04_Support_Vector_Machines/03_svm_kernels.py)
5. [Implmenting Non-Linear SVMs](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/04_Support_Vector_Machines/04_nonlinear_svm.py)
6. [Implementing Multi-class SVMs](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/04_Support_Vector_Machines/05_multiclass_svm.py)
1. [Introduction](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/04_Support_Vector_Machines/01_Introduction)
2. [Working with Linear SVMs](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/04_Support_Vector_Machines/02_Working_with_Linear_SVMs)
3. [Reduction to Linear Regression](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/04_Support_Vector_Machines/03_Reduction_to_Linear_Regression)
4. [Working with Kernels in Tensorflow](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/04_Support_Vector_Machines/04_Working_with_Kernels)
5. [Implmenting Non-Linear SVMs](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/04_Support_Vector_Machines/05_Implementing_Nonlinear_SVMs)
6. [Implementing Multi-class SVMs](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/04_Support_Vector_Machines/06_Implementing_Multiclass_SVMs)
12 changes: 6 additions & 6 deletions 05_Nearest_Neighbor_Methods/readme.md
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
# Ch 5: Nearest Neighbor Methods

1. Introduction
2. [Working with Nearest Neighbors](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/05_Nearest_Neighbor_Methods/01_nearest_neighbor.py)
3. [Working with Text Based Distances](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/05_Nearest_Neighbor_Methods/02_text_distances.py)
4. [Computing Mixing Distance Functions](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/05_Nearest_Neighbor_Methods/03_mixed_distance_functions_knn.py)
5. [Using Address Matching](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/05_Nearest_Neighbor_Methods/04_address_matching.py)
6. [Using Nearest Neighbors for Image Recognition](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/05_Nearest_Neighbor_Methods/05_image_recognition.py)
1. [Introduction](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/05_Nearest_Neighbor_Methods/01_Introduction)
2. [Working with Nearest Neighbors](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/05_Nearest_Neighbor_Methods/02_Working_with_Nearest_Neighbors)
3. [Working with Text Based Distances](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/05_Nearest_Neighbor_Methods/03_Working_with_Text_Distances)
4. [Computing Mixing Distance Functions](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/05_Nearest_Neighbor_Methods/04_Computing_with_Mixed_Distance_Functions)
5. [Using Address Matching](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/05_Nearest_Neighbor_Methods/05_An_Address_Matching_Example)
6. [Using Nearest Neighbors for Image Recognition](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/05_Nearest_Neighbor_Methods/06_Nearest_Neighbors_for_Image_Recognition)
6 changes: 3 additions & 3 deletions 06_Neural_Networks/readme.md
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
# Ch 6: Neural Networks

1. Introduction
2. [Implementing Operational Gates](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/06_Neural_Networks/01_gates.py)
3. [Working with Gates and Activation Functions](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/06_Neural_Networks/02_activation_functions.py)
1. [Introduction](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/06_Neural_Networks/01_Introduction)
2. [Implementing Operational Gates](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/06_Neural_Networks/02_Implementing_an_Operational_Gate)
3. [Working with Gates and Activation Functions](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/06_Neural_Networks/03_Working_with_Activation_Functions)
4. [Implmenting a One Layer Neural Network](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/06_Neural_Networks/03_single_hidden_layer_network.py)
5. Implementing Different Layers
6. Using Multi-layer Neural Networks
Expand Down
78 changes: 39 additions & 39 deletions readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,60 +9,60 @@

## [Ch 1: Getting Started with Tensorflow](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/01_Introduction)

1. General Outline of TF Algorithms
2. [Creating and Using Tensors](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/01_Introduction/01_tensors.py)
3. [Using Variables and Placeholders](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/01_Introduction/02_placeholders.py)
4. [Working with Matrices](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/01_Introduction/03_matrices.py)
5. [Declaring Operations](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/01_Introduction/04_operations.py)
6. [Implementing Activation Functions](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/01_Introduction/05_activation_functions.py)
7. [Working with Data Sources](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/01_Introduction/06_data_gathering.py)
8. Additional Resources
1. [General Outline of TF Algorithms](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/01_Introduction/01_How_Tensorflow_Works)
2. [Creating and Using Tensors](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/01_Introduction/02_Creating_and_Using_Tensors)
3. [Using Variables and Placeholders](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/01_Introduction/03_Using_Variables_and_Placeholders)
4. [Working with Matrices](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/01_Introduction/04_Working_with_Matrices)
5. [Declaring Operations](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/01_Introduction/05_Declaring_Operations)
6. [Implementing Activation Functions](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/01_Introduction/06_Implementing_Activation_Functions)
7. [Working with Data Sources](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/01_Introduction/07_Working_with_Data_Sources)
8. [Additional Resources](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/01_Introduction/08_Additional_Resources)

## [Ch 2: The Tensorflow Way](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/02_Tensorflow_Way)

1. [One Operation as a Computational Graph](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/02_Tensorflow_Way/01_operations_on_a_graph.py)
2. [Layering Nested Operations](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/02_Tensorflow_Way/02_layering_nested_operations.py)
3. [Working with Multiple Layers](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/02_Tensorflow_Way/03_multiple_layers.py)
4. [Implmenting Loss Functions](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/02_Tensorflow_Way/04_loss_functions.py)
5. [Implmenting Back Propagation](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/02_Tensorflow_Way/05_back_propagation.py)
6. [Working with Stochastic and Batch Training](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/02_Tensorflow_Way/06_batch_stochastic_training.py)
7. [Combining Everything Together](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/02_Tensorflow_Way/07_combining_everything_together.py)
8. [Evaluating Models](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/02_Tensorflow_Way/08_evaluating_models.py)
1. [One Operation as a Computational Graph](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/02_Tensorflow_Way/01_Operations_as_a_Computational_Graph)
2. [Layering Nested Operations](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/02_Tensorflow_Way/02_Layering_Nested_Operations)
3. [Working with Multiple Layers](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/02_Tensorflow_Way/03_Working_with_Multiple_Layers)
4. [Implmenting Loss Functions](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/02_Tensorflow_Way/04_Implementing_Loss_Functions)
5. [Implmenting Back Propagation](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/02_Tensorflow_Way/05_Implementing_Back_Propagation)
6. [Working with Stochastic and Batch Training](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/02_Tensorflow_Way/06_Working_with_Batch_and_Stochastic_Training)
7. [Combining Everything Together](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/02_Tensorflow_Way/07_Combining_Everything_Together)
8. [Evaluating Models](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/02_Tensorflow_Way/08_Evaluating_Models)

## [Ch 3: Linear Regression](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression)

1. [Using the Matrix Inverse Method](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/01_lin_reg_inverse.py)
2. [Implementing a Decomposition Method](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/02_lin_reg_decomposition.py)
3. [Learning the Tensorflow Way of Linear Regression](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/03_lin_reg_tensorflow_way.py)
4. [Understanding Loss Functions in Linear Regression](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/04_lin_reg_l1_vs_l2.py)
5. [Implementing Deming Regression (Total Regression)](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/05_deming_regression.py)
6. [Implementing Lasso and Ridge Regression](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/06_lasso_and_ridge_regression.py)
7. [Implementing Elastic Net Regression](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/07_elasticnet_regression.py)
8. [Implementing Logistic Regression](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/03_Linear_Regression/08_logistic_regression.py)
1. [Using the Matrix Inverse Method](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/01_Using_the_Matrix_Inverse_Method)
2. [Implementing a Decomposition Method](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/02_Implementing_a_Decomposition_Method)
3. [Learning the Tensorflow Way of Linear Regression](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/03_Tensorflow_Way_of_Linear_Regression)
4. [Understanding Loss Functions in Linear Regression](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/04_Loss_Functions_in_Linear_Regressions)
5. [Implementing Deming Regression (Total Regression)](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/05_Implementing_Deming_Regression)
6. [Implementing Lasso and Ridge Regression](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/06_Implementing_Lasso_and_Ridge_Regression)
7. [Implementing Elastic Net Regression](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/07_Implementing_Elasticnet_Regression)
8. [Implementing Logistic Regression](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/03_Linear_Regression/08_Implementing_Logistic_Regression)

## [Ch 4: Support Vector Machines](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/04_Support_Vector_Machines)

1. Introduction
2. [Working with Linear SVMs](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/04_Support_Vector_Machines/01_linear_svm.py)
3. [Reduction to Linear Regression](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/04_Support_Vector_Machines/02_support_vector_regression.py)
4. [Working with Kernels in Tensorflow](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/04_Support_Vector_Machines/03_svm_kernels.py)
5. [Implmenting Non-Linear SVMs](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/04_Support_Vector_Machines/04_nonlinear_svm.py)
6. [Implementing Multi-class SVMs](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/04_Support_Vector_Machines/05_multiclass_svm.py)
1. [Introduction](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/04_Support_Vector_Machines/01_Introduction)
2. [Working with Linear SVMs](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/04_Support_Vector_Machines/02_Working_with_Linear_SVMs)
3. [Reduction to Linear Regression](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/04_Support_Vector_Machines/03_Reduction_to_Linear_Regression)
4. [Working with Kernels in Tensorflow](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/04_Support_Vector_Machines/04_Working_with_Kernels)
5. [Implmenting Non-Linear SVMs](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/04_Support_Vector_Machines/05_Implementing_Nonlinear_SVMs)
6. [Implementing Multi-class SVMs](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/04_Support_Vector_Machines/06_Implementing_Multiclass_SVMs)

## [Ch 5: Nearest Neighbor Methods](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/05_Nearest_Neighbor_Methods)

1. Introduction
2. [Working with Nearest Neighbors](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/05_Nearest_Neighbor_Methods/01_nearest_neighbor.py)
3. [Working with Text Based Distances](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/05_Nearest_Neighbor_Methods/02_text_distances.py)
4. [Computing Mixing Distance Functions](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/05_Nearest_Neighbor_Methods/03_mixed_distance_functions_knn.py)
5. [Using Address Matching](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/05_Nearest_Neighbor_Methods/04_address_matching.py)
6. [Using Nearest Neighbors for Image Recognition](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/05_Nearest_Neighbor_Methods/05_image_recognition.py)
1. [Introduction](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/05_Nearest_Neighbor_Methods/01_Introduction)
2. [Working with Nearest Neighbors](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/05_Nearest_Neighbor_Methods/02_Working_with_Nearest_Neighbors)
3. [Working with Text Based Distances](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/05_Nearest_Neighbor_Methods/03_Working_with_Text_Distances)
4. [Computing Mixing Distance Functions](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/05_Nearest_Neighbor_Methods/04_Computing_with_Mixed_Distance_Functions)
5. [Using Address Matching](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/05_Nearest_Neighbor_Methods/05_An_Address_Matching_Example)
6. [Using Nearest Neighbors for Image Recognition](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/05_Nearest_Neighbor_Methods/06_Nearest_Neighbors_for_Image_Recognition)

## [Ch 6: Neural Networks](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/06_Neural_Networks)

1. Introduction
2. [Implementing Operational Gates](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/06_Neural_Networks/01_gates.py)
3. [Working with Gates and Activation Functions](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/06_Neural_Networks/02_activation_functions.py)
1. [Introduction](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/06_Neural_Networks/01_Introduction)
2. [Implementing Operational Gates](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/06_Neural_Networks/02_Implementing_an_Operational_Gate)
3. [Working with Gates and Activation Functions](https://github.com/nfmcclure/tensorflow_cookbook/tree/master/06_Neural_Networks/03_Working_with_Activation_Functions)
4. [Implmenting a One Layer Neural Network](https://github.com/nfmcclure/tensorflow_cookbook/blob/master/06_Neural_Networks/03_single_hidden_layer_network.py)
5. Implementing Different Layers
6. Using Multi-layer Neural Networks
Expand Down
Loading

0 comments on commit 1a1253c

Please sign in to comment.