Skip to content

Commit

Permalink
CUDA: add BF16 support (ggerganov#11093)
Browse files Browse the repository at this point in the history
* CUDA: add BF16 support
  • Loading branch information
JohannesGaessler authored Jan 6, 2025
1 parent b56f079 commit 46e3556
Show file tree
Hide file tree
Showing 6 changed files with 87 additions and 39 deletions.
2 changes: 2 additions & 0 deletions ggml/src/ggml-cuda/convert.cu
Original file line number Diff line number Diff line change
Expand Up @@ -680,6 +680,8 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
return dequantize_row_iq3_s_cuda;
case GGML_TYPE_F16:
return convert_unary_cuda<half>;
case GGML_TYPE_BF16:
return convert_unary_cuda<nv_bfloat16>;
default:
return nullptr;
}
Expand Down
3 changes: 2 additions & 1 deletion ggml/src/ggml-cuda/ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -1728,7 +1728,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);

bool use_mul_mat_vec = src0->type == GGML_TYPE_F16
bool use_mul_mat_vec = (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
Expand Down Expand Up @@ -2869,6 +2869,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_BF16:
#ifdef GGML_USE_MUSA
if (a->type == GGML_TYPE_Q3_K) {
return false;
Expand Down
114 changes: 76 additions & 38 deletions ggml/src/ggml-cuda/mmv.cu
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
#include "common.cuh"
#include "mmv.cuh"

template <typename type_acc, int block_size>
template <typename T, typename type_acc, int block_size>
static __global__ void mul_mat_vec(
const half * __restrict__ x, const float * __restrict__ y, float * __restrict__ dst, const int64_t ncols2, const int64_t stride_row,
const T * __restrict__ x, const float * __restrict__ y, float * __restrict__ dst, const int64_t ncols2, const int64_t stride_row,
const int64_t channel_ratio, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst) {
const int64_t row = blockIdx.x;
const int64_t channel = blockIdx.z;
Expand All @@ -13,7 +13,6 @@ static __global__ void mul_mat_vec(
y += channel *stride_channel_y;
dst += channel *stride_channel_dst;

const half2 * x2 = (const half2 *) x;
const float2 * y2 = (const float2 *) y;

extern __shared__ char data_mmv[];
Expand All @@ -28,28 +27,44 @@ static __global__ void mul_mat_vec(

float sumf;

if (std::is_same<type_acc, float>::value) {
sumf = 0.0f;
if constexpr (std::is_same<T, half>::value) {
const half2 * x2 = (const half2 *) x;

for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) {
const float2 tmpx = __half22float2(x2[col2]);
const float2 tmpy = y2[col2];
sumf += tmpx.x * tmpy.x;
sumf += tmpx.y * tmpy.y;
}
} else {
if (std::is_same<type_acc, float>::value) {
sumf = 0.0f;

for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) {
const float2 tmpx = __half22float2(x2[col2]);
const float2 tmpy = y2[col2];
sumf += tmpx.x * tmpy.x;
sumf += tmpx.y * tmpy.y;
}
} else {
#ifdef FP16_AVAILABLE
half2 sumh2 = make_half2(0.0f, 0.0f);
half2 sumh2 = make_half2(0.0f, 0.0f);

for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) {
const float2 tmp = y2[col2];
sumh2 += x2[col2] * make_half2(tmp.x, tmp.y);
}
for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) {
const float2 tmp = y2[col2];
sumh2 += x2[col2] * make_half2(tmp.x, tmp.y);
}

sumf = __low2float(sumh2) + __high2float(sumh2);
sumf = __low2float(sumh2) + __high2float(sumh2);
#else
NO_DEVICE_CODE;
NO_DEVICE_CODE;
#endif // FP16_AVAILABLE
}
} else if constexpr (std::is_same<T, nv_bfloat16>::value) {
const int * x2 = (const int *) x;
sumf = 0.0f;

for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) {
const int tmpx = x2[col2];
const float2 tmpy = y2[col2];
sumf += float(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[0]) * tmpy.x;
sumf += float(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[1]) * tmpy.y;
}
} else {
static_assert(std::is_same<T, void>::value, "unsupported type");
}

sumf = warp_reduce_sum(sumf);
Expand All @@ -71,9 +86,9 @@ static __global__ void mul_mat_vec(
dst[row] = sumf;
}

template <typename type_acc>
template <typename T, typename type_acc>
static void launch_mul_mat_vec_cuda(
const half * x, const float * y, float * dst,
const T * x, const float * y, float * dst,
const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
cudaStream_t stream) {
Expand All @@ -97,35 +112,35 @@ static void launch_mul_mat_vec_cuda(
const dim3 block_dims(block_size_best, 1, 1);
switch (block_size_best) {
case 32: {
mul_mat_vec<type_acc, 32><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec<T, type_acc, 32><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
case 64: {
mul_mat_vec<type_acc, 64><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec<T, type_acc, 64><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
case 96: {
mul_mat_vec<type_acc, 96><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec<T, type_acc, 96><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
case 128: {
mul_mat_vec<type_acc, 128><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec<T, type_acc, 128><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
case 160: {
mul_mat_vec<type_acc, 160><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec<T, type_acc, 160><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
case 192: {
mul_mat_vec<type_acc, 192><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec<T, type_acc, 192><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
case 224: {
mul_mat_vec<type_acc, 224><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec<T, type_acc, 224><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
case 256: {
mul_mat_vec<type_acc, 256><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec<T, type_acc, 256><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
default: {
Expand All @@ -134,25 +149,25 @@ static void launch_mul_mat_vec_cuda(
}
}

template<typename T>
static void mul_mat_vec_cuda(
const half * x, const float * y, float * dst,
const T * x, const float * y, float * dst,
const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
enum ggml_prec prec, cudaStream_t stream) {
switch (prec) {
case GGML_PREC_DEFAULT: {
launch_mul_mat_vec_cuda<half>(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y,
launch_mul_mat_vec_cuda<T, half>(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y,
stride_channel_x, stride_channel_y, stride_channel_dst, stream);
} break;
case GGML_PREC_F32: {
launch_mul_mat_vec_cuda<float>(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y,
launch_mul_mat_vec_cuda<T, float>(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y,
stride_channel_x, stride_channel_y, stride_channel_dst, stream);
} break;
}
}

void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);

Expand All @@ -164,7 +179,6 @@ void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor *
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32;

const half * src0_d = (const half *) src0->data;
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;

Expand All @@ -181,7 +195,20 @@ void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor *
const int64_t channel_stride_y = src1->nb[2] / ggml_type_size(src1->type);
const int64_t channel_stride_dst = dst->nb[2] / ggml_type_size( dst->type);

mul_mat_vec_cuda(src0_d, src1_d, dst_d, ne00, ne01, stride_row, ne02, ne12, channel_stride_x, channel_stride_y, channel_stride_dst, prec, ctx.stream());
switch (src0->type) {
case GGML_TYPE_F16: {
const half * src0_d = (const half *) src0->data;
mul_mat_vec_cuda(src0_d, src1_d, dst_d, ne00, ne01, stride_row, ne02, ne12,
channel_stride_x, channel_stride_y, channel_stride_dst, prec, ctx.stream());
} break;
case GGML_TYPE_BF16: {
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0->data;
mul_mat_vec_cuda(src0_d, src1_d, dst_d, ne00, ne01, stride_row, ne02, ne12,
channel_stride_x, channel_stride_y, channel_stride_dst, prec, ctx.stream());
} break;
default:
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
}
}

void ggml_cuda_op_mul_mat_vec(
Expand All @@ -190,7 +217,6 @@ void ggml_cuda_op_mul_mat_vec(
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream) {

GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);

Expand All @@ -211,8 +237,20 @@ void ggml_cuda_op_mul_mat_vec(
const int64_t channel_stride_y = 0;
const int64_t channel_stride_dst = 0;

mul_mat_vec_cuda((const half *) src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stride_row,
nchannels_x, nchannels_y, channel_stride_x, channel_stride_y, channel_stride_dst, prec, stream);
switch (src0->type) {
case GGML_TYPE_F16: {
const half * src0_d = (const half *) src0_dd_i;
mul_mat_vec_cuda(src0_d, src1_ddf_i, dst_dd_i, ne00, row_diff, stride_row,
nchannels_x, nchannels_y, channel_stride_x, channel_stride_y, channel_stride_dst, prec, stream);
} break;
case GGML_TYPE_BF16: {
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0_dd_i;
mul_mat_vec_cuda(src0_d, src1_ddf_i, dst_dd_i, ne00, row_diff, stride_row,
nchannels_x, nchannels_y, channel_stride_x, channel_stride_y, channel_stride_dst, prec, stream);
} break;
default:
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
}

GGML_UNUSED(ctx);
GGML_UNUSED(src1);
Expand Down
1 change: 1 addition & 0 deletions ggml/src/ggml-cuda/vendors/cuda.h
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
#include <cuda_runtime.h>
#include <cuda.h>
#include <cublas_v2.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>

#if CUDART_VERSION < 11020
Expand Down
3 changes: 3 additions & 0 deletions ggml/src/ggml-cuda/vendors/hip.h
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
#include <hip/hip_runtime.h>
#include <hipblas/hipblas.h>
#include <hip/hip_fp16.h>
#include <hip/hip_bfloat16.h>
#ifdef __HIP_PLATFORM_AMD__
// for rocblas_initialize()
#include "rocblas/rocblas.h"
Expand Down Expand Up @@ -121,6 +122,8 @@
#define __has_builtin(x) 0
#endif

typedef hip_bfloat16 nv_bfloat16;

typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
Expand Down
3 changes: 3 additions & 0 deletions ggml/src/ggml-cuda/vendors/musa.h
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
#include <musa_runtime.h>
#include <musa.h>
#include <mublas.h>
#include <musa_bf16.h>
#include <musa_fp16.h>
#define CUBLAS_COMPUTE_16F CUDA_R_16F
#define CUBLAS_COMPUTE_32F CUDA_R_32F
Expand Down Expand Up @@ -132,3 +133,5 @@
#define cudaKernelNodeParams musaKernelNodeParams
#define cudaStreamCaptureModeRelaxed musaStreamCaptureModeRelaxed
#define cudaStreamEndCapture musaStreamEndCapture

typedef mt_bfloat16 nv_bfloat16;

0 comments on commit 46e3556

Please sign in to comment.