Skip to content

Commit

Permalink
SYCL: Add gated linear attention kernel (ggerganov#11175)
Browse files Browse the repository at this point in the history
* SYCL: Add Gated Linear attention kernel

* glahpp: add a space at the end of file

* gla: Put the barrier inside the main logic loop
  • Loading branch information
qnixsynapse authored Jan 15, 2025
1 parent b4d92a5 commit f446c2c
Show file tree
Hide file tree
Showing 4 changed files with 118 additions and 0 deletions.
1 change: 1 addition & 0 deletions ggml/src/ggml-sycl/backend.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -29,5 +29,6 @@
#include "wkv6.hpp"
#include "outprod.hpp"
#include "element_wise.hpp"
#include "gla.hpp"

#endif // GGML_SYCL_BACKEND_HPP
4 changes: 4 additions & 0 deletions ggml/src/ggml-sycl/ggml-sycl.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -4040,6 +4040,9 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens
case GGML_OP_RWKV_WKV6:
ggml_sycl_op_rwkv_wkv6(ctx, dst);
break;
case GGML_OP_GATED_LINEAR_ATTN:
ggml_sycl_op_gated_linear_attn(ctx, dst);
break;
default:
return false;
}
Expand Down Expand Up @@ -4507,6 +4510,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_LEAKY_RELU:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_RWKV_WKV6:
case GGML_OP_GATED_LINEAR_ATTN:
return true;
default:
return false;
Expand Down
105 changes: 105 additions & 0 deletions ggml/src/ggml-sycl/gla.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
#include <sycl/sycl.hpp>

#include "common.hpp"

template <u_int HEAD_SIZE>
static void gated_linear_attn_f32_kernel(const dpct::queue_ptr stream, u_int B, u_int T, u_int C, u_int H, float scale,
const float * k, const float * v, const float * r, const float * td,
const float * s, float * dst) {
const u_int head_size = HEAD_SIZE;
const u_int state_size = C * head_size;
const u_int n_seq_tokens = T / B;
sycl::range<1> block_dims((C / H));
sycl::range<1> grid_dims((B * H));
stream->submit([&](sycl::handler & cgh) {
/* local memory accessors*/
auto _k = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh);
auto _r = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh);
auto _td = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh);

cgh.parallel_for(sycl::nd_range<1>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<1> item) {
u_int tid = item.get_local_id(0);
u_int bid = item.get_group(0);

u_int batch_i = bid / H;
u_int head_i = bid % H;

float state[head_size];

#pragma unroll
for (u_int i = 0; i < head_size; i++) {
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
}

for (u_int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) {

item.barrier(sycl::access::fence_space::local_space); //sync threads
_k[tid] = k[t];
_r[tid] = r[t];
_td[tid] = td[t];
item.barrier(sycl::access::fence_space::local_space); //sync threads

const float _v = v[t];
float y = 0;

for (u_int j = 0; j < head_size; j += 4) {
const sycl::float4 & k = (sycl::float4 &) (_k[j]);
const sycl::float4 & r = (sycl::float4 &) (_r[j]);
const sycl::float4 & td = (sycl::float4 &) (_td[j]);
sycl::float4 & s = (sycl::float4 &) (state[j]);
sycl::float4 kv;

kv.x() = k.x() * _v;
kv.y() = k.y() * _v;
kv.z() = k.z() * _v;
kv.w() = k.w() * _v;

s.x() = s.x() * td.x() + kv.x();
s.y() = s.y() * td.y() + kv.y();
s.z() = s.z() * td.z() + kv.z();
s.w() = s.w() * td.w() + kv.w();

y += r.x() * s.x();
y += r.y() * s.y();
y += r.z() * s.z();
y += r.w() * s.w();
}
dst[t] = y * scale;
}
#pragma unroll
for (u_int i = 0; i < head_size; i++) {
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
}
});
});
}

void ggml_sycl_op_gated_linear_attn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
const float * k_d = static_cast<const float *>(dst->src[0]->data);
const float * v_d = static_cast<const float *>(dst->src[1]->data);
const float * r_d = static_cast<const float *>(dst->src[2]->data);
const float * td_d = static_cast<const float *>(dst->src[3]->data);
const float * s_d = static_cast<const float *>(dst->src[4]->data);

const int64_t B = dst->src[4]->ne[1];
const int64_t T = dst->src[0]->ne[2];
const int64_t C = dst->ne[0];
const int64_t H = dst->src[0]->ne[1];

dpct::queue_ptr stream = ctx.stream();
GGML_ASSERT(dst->src[4]->type == GGML_TYPE_F32);
GGML_ASSERT(C % H == 0);
GGML_ASSERT(C / H == 64 || C / H == 128);

float scale;
memcpy(&scale, dst->op_params, sizeof(float));

float * dst_d = (float *) dst->data;

if (C / H == 64) {
gated_linear_attn_f32_kernel<64>(stream, B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d);
} else {
gated_linear_attn_f32_kernel<128>(stream, B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d);
}
}
8 changes: 8 additions & 0 deletions ggml/src/ggml-sycl/gla.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
#ifndef GGML_SYCL_GLA_HPP
#define GGML_SYCL_GLA_HPP

#include "common.hpp"

void ggml_sycl_op_gated_linear_attn(ggml_backend_sycl_context & ctx, ggml_tensor * dst);

#endif // GGML_SYCL_GLA_HPP

0 comments on commit f446c2c

Please sign in to comment.