Skip to content

Commit

Permalink
Added dpwrspc. tdpwrspc
Browse files Browse the repository at this point in the history
Previously, those functions were in pyspedas
  • Loading branch information
nickssl committed Jan 5, 2024
1 parent 451456c commit 3e468c8
Show file tree
Hide file tree
Showing 6 changed files with 425 additions and 3 deletions.
2 changes: 1 addition & 1 deletion meta.yaml
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
{% set name = "pytplot" %}
{% set version = "2.2.1" %}
{% set version = "2.2.2" %}

package:
name: "{{ name|lower }}"
Expand Down
2 changes: 1 addition & 1 deletion pytplot/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,7 +165,7 @@ def newlayout(self, layout):
#from pytplot.tplot_math import *
from .tplot_math import add_across, add, avg_res_data, clip, crop, deflag, degap, derive, divide, flatten
from .tplot_math import interp_nan, tinterp, join_vec, multiply, resample, spec_mult, split_vec, subtract, pwr_spec
from .tplot_math import clean_spikes, tsmooth, smooth, tdotp, tcrossp, pwrspc, tpwrspc
from .tplot_math import clean_spikes, tsmooth, smooth, tdotp, tcrossp, pwrspc, tpwrspc, dpwrspc, tdpwrspc
#from .tplot_math import tdeflag
from .tplot_math import tnormalize, subtract_median, subtract_average, time_clip, tkm2re, makegap

Expand Down
2 changes: 2 additions & 0 deletions pytplot/tplot_math/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,3 +30,5 @@
from .tdeflag import tdeflag
from .pwrspc import pwrspc
from .tpwrspc import tpwrspc
from .dpwrspc import dpwrspc
from .tdpwrspc import tdpwrspc
230 changes: 230 additions & 0 deletions pytplot/tplot_math/dpwrspc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,230 @@
"""
Compute power spectra for data.
Notes
-----
Similar to dpwrspc.pro in IDL SPEDAS.
"""
import logging
import numpy as np


def dpwrspc(
time,
quantity,
nboxpoints=256,
nshiftpoints=128,
bin=3,
tbegin=-1.0,
tend=-1.0,
noline=False,
nohanning=False,
notperhz=False,
notmvariance=False,
tm_sensitivity=None,
):
"""
Compute power spectra.
Parameters
----------
time: list of float
Time array.
quantity: list of float
Data array.
nboxpoints: int, optional
The number of points to use for the hanning window.
The default is 256.
nshiftpoints: int, optional
The number of points to shift for each spectrum.
The default is 128.
bin: int, optional
Size for binning of the data along the frequency domain.
The default is 3.
tbegin: float, optional
Start time for the calculation.
If -1.0, the start time is the first time in the time array.
tend: float, optional
End time for the calculation.
If -1.0, the end time is the last time in the time array.
nohanning: bool, optional
If True, no hanning window is applied to the input.
The default is False.
noline: bool, optional
If True, no straight line is subtracted.
The default is False.
notperhz: bool, optional
If True, the output units are the square of the input units.
The default is False.
notmvariance: bool, optional
If True, replace output spectrum for any windows that have variable
cadence with NaNs.
The default is False.
tm_sensitivity: float, optional
If noTmVariance is set, this number controls how much of a dt anomaly
is accepted.
The default is None.
Returns
-------
tdps: array of float
The time array for the dynamic power spectrum, the center time of the
interval used for the spectrum.
fdps: array of float
The frequency array (units =1/time units).
dps: array of float
The power spectrum, (units of quantity)^2/frequency_units.
"""
tdps, fdps, dps = np.array(-1.0), np.array(-1.0), np.array(-1.0)
tdps0, fdps0, dps0 = np.array(-1.0), np.array(-1.0), np.array(-1.0)

if nohanning is False:
window = np.array(np.hanning(nboxpoints), dtype=np.float64)
else:
window = np.ones(nboxpoints)

time = np.array(time, dtype=np.float64)
quantity = np.array(quantity, dtype=np.float64)

if tbegin == -1.0:
tbegin = time[0]
if tend == -1.0:
tend = time[-1]

# Find the time array that correspond to the start and end times
tbegin_idx = np.where(time >= tbegin)[0][0]
tend_idx = np.where(time <= tend)[0][-1]
if tend_idx - tbegin_idx < nboxpoints:
logging.error("Not enough points for a calculation")
return tdps0, fdps0, dps0
time = time[tbegin_idx : tend_idx + 1]
quantity = quantity[tbegin_idx : tend_idx + 1]

# remove NaNs from the data
where_finite = np.where(np.isnan(quantity) == False)
quantity2process = quantity[where_finite[0]]
times2process = time[where_finite[0]]
nboxpnts = int(nboxpoints)
nshiftpnts = nshiftpoints

totalpoints = len(times2process)
nspectra = int((totalpoints - nboxpnts / 2.0) / nshiftpnts)

# test nspectra, if the value of nshiftpnts is much smaller than
# nboxpnts/2 strange things happen

nbegin = np.array([nshiftpnts * i for i in range(nspectra)], dtype=np.int64)
nend = nbegin + nboxpnts

okspec = np.where(nend <= totalpoints - 1)

if len(okspec[0]) <= 0:
logging.error("Not enough points for a calculation")
return tdps0, fdps0, dps0

tdps = np.zeros(nspectra)
nfreqs = int(int(nboxpnts / 2) / bin)

if nfreqs <= 1:
logging.error("Not enough frequencies for a calculation")
return tdps0, fdps0, dps0

dps = np.zeros([nspectra, nfreqs])
fdps = np.zeros([nspectra, nfreqs])

# Main calculation loop
for nthspectrum in range(0, nspectra):
nbegin = int(nthspectrum * nshiftpnts)
nend = nbegin + nboxpnts

if nend <= totalpoints:
t = times2process[nbegin:nend]
t0 = t[0]
t = t - t0
x = quantity2process[nbegin:nend]

# Use center time
tdps[nthspectrum] = (times2process[nbegin] + times2process[nend - 1]) / 2.0

if noline is False:
coef = np.polyfit(t, x, 1)
poly1d_fn = np.poly1d(coef)
line = poly1d_fn(t)
x = x - line

if nohanning is False:
x = x * window

bign = nboxpnts

if bign % 2 != 0:
logging.warning(
"dpwrspc: needs an even number of data points, dropping last point..."
)
t = t[0 : bign - 1]
x = x[0 : bign - 1]
bign = bign - 1

n_tm = len(t)

# time variance can break power spectrum
# this keyword skips over those gaps
if notmvariance and n_tm > 1:
if tm_sensitivity is not None:
tmsn = tm_sensitivity
else:
tmsn = 100.0

tdiff = t[1:n_tm] - t[0 : n_tm - 1]
med_diff = np.median(tdiff)

idx = np.where(np.abs(tdiff / med_diff - 1) > 1.0 / tmsn)

if len(idx[0]) > 0:
dps[nthspectrum, :] = float("nan")
fdps[nthspectrum, :] = float("nan")

continue

# following Numerical recipes in Fortran, p. 421, sort of...
# (actually following the IDL implementation)
k = np.array(range(int(bign / 2) + 1))
tres = np.median(t[1 : len(t)] - t[0 : len(t) - 1])
fk = k / (bign * tres)

xs2 = np.abs(np.fft.fft(x)) ** 2

pwr = np.zeros(int(bign / 2 + 1))
pwr[0] = xs2[0] / bign**2
ptmp = 1 + np.array(range(int(bign / 2 - 1)))
pwr[1 : int(bign / 2)] = (
xs2[1 : int(bign / 2)] + xs2[bign - ptmp]
) / bign**2
pwr[int(bign / 2)] = xs2[int(bign / 2)] / bign**2

if nohanning is False:
wss = float(bign) * float(np.sum(window**2))
pwr = bign**2 * pwr / wss

dfreq = bin * (fk[1] - fk[0])

npwr = len(pwr) - 1
nfinal = int(npwr / bin)
iarray = np.array(range(nfinal))
power = np.zeros(nfinal)

# Note: zeroth point includes zero freq. power.
freqcenter = (fk[iarray * bin + 1] + fk[iarray * bin + bin]) / 2.0

for i in range(bin):
power = power + pwr[iarray * bin + i + 1]

if notperhz is False:
power = power / dfreq

dps[nthspectrum, :] = power
fdps[nthspectrum, :] = freqcenter

return tdps, fdps, dps
Loading

0 comments on commit 3e468c8

Please sign in to comment.