Skip to content

Commit

Permalink
Update ai_job_concepts.md
Browse files Browse the repository at this point in the history
  • Loading branch information
nivu authored Apr 23, 2024
1 parent cb5ba52 commit 6e93c18
Showing 1 changed file with 62 additions and 18 deletions.
80 changes: 62 additions & 18 deletions ai_job_concepts.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,37 +45,43 @@
#### **Sub-module 3.1: Fundamentals of ML**
- Supervised vs. unsupervised learning
- Overfitting and underfitting
- Bias Variance Tradeoff
- Train-test split
- Cross-validation

#### **Sub-module 3.2: Regression Algorithms**
- Linear regression
- Polynomial regression
- Ridge and Lasso regression
- Linear regression (Line fitting, Residual, Gradient Descent)
- Polynomial regression (Polynomial Order)
- Ridge, Lasso and ElasticNet regression (What effed does each penalty term have on the training data)

#### **Sub-module 3.3: Classification Algorithms**
- Logistic regression
- Decision Trees
- Logistic regression (OVA, OVR)
- Decision Trees (Gini, Entrophy)
- Random Forests
- Support Vector Machines (SVM)
- Support Vector Machines (SVM) (Max-margin Classifier, Kernel trick [RBF, Linear, Sigmoid])
- k-Nearest Neighbors (k-NN)

#### **Sub-module 3.4: Unsupervised Algorithms**
#### **Sub-module 3.4: Ensemble Methods**
- Bagging
- Boosting (AdaBoost, GradientBoost, XGBoost, CatBoost, LightGBM)
- Stacking

#### **Sub-module 3.5: Unsupervised Algorithms**
- k-means clustering
- Hierarchical clustering
- Principal Component Analysis (PCA)

#### **Sub-module 3.5: Ensemble Methods**
- Bagging
- Boosting
- Stacking

#### **Sub-module 3.6: Model Evaluation**
- Confusion matrix
- ROC-AUC
- Precision-Recall
- F1 Score

#### **Sub-module 3.7: Model Finetuning**
- Grid Search
- Optional
- Cross-validation

---

### **Module 4: Deep Learning**
Expand All @@ -88,10 +94,14 @@

#### **Sub-module 4.2: Advanced Neural Networks**
- Convolutional Neural Networks (CNNs)
- LeNet, AlexNet, VGGNet, InceptionNet, ResNet, EfficientNet
- Transfer Learning
- Recurrent Neural Networks (RNNs)
- Vanishing and Exploding Gradient
- Long Short-Term Memory networks (LSTMs)
- Autoencoders
- Generative Adversarial Networks (GANs)
- Autoencoders (VAE)
- Generative Adversarial Networks (GANs) (DCGAN, PixGAN, CycleGAN)
- Transformers

#### **Sub-module 4.3: Frameworks and Tools**
- TensorFlow
Expand All @@ -105,20 +115,54 @@

---

### **Module 5: Special Topics**
### **Module 5: Gen AI**

#### **Sub-module 5.1: Transformers)**
- Sequence to Sequence Models
- Attention Mechanism
- Self Attention
- Transformers, Positional Encoding

#### **Sub-module 6.2: LLM Architectures**
- Encoder Only Architecture
- BERT (Bidirectional Encoder Representations from Transformers)
- GPT (Generative Pre-trained Transformer) - often categorized as Decoder Only but can be adapted for encoder-only tasks
DistilBERT (a distilled version of BERT that is lighter and faster)
ALBERT (A Lite BERT for self-supervised learning of language representations)
- Decoder Only Architecture
- GPT (Generative Pre-trained Transformer)
- Encoder-Decoder Architecture
- Transformer (original model comprising both encoder and decoder)
- BART (Bidirectional and Auto-Regressive Transformers)
- T5 (Text-to-Text Transfer Transformer)

#### **Sub-module 6.3: Prompt Engineering**
- Zero-shot, Single Shot, Few Shot
- RAG
- OpenAI APIs
- Using self-hosted LLMs, Huggingface

---

### **Module 6: Special Topics**

#### **Sub-module 5.1: Natural Language Processing (NLP)**
#### **Sub-module 6.1: Natural Language Processing (NLP)**
- Text preprocessing (tokenization, stemming, lemmatization)
- Word embeddings (Word2Vec, GloVe)
- Sentiment analysis
- Named Entity Recognition (NER)

#### **Sub-module 5.2: Computer Vision**
#### **Sub-module 6.2: Computer Vision**
- Image processing basics
- Object detection
- Image classification

#### **Sub-module 5.3: Time Series Analysis**
#### **Sub-module 6.3: Time Series Analysis**
- ARIMA models
- Seasonal decomposition
- Forecasting


Courses

1. https://www.coursera.org/professional-certificates/ibm-data-science

0 comments on commit 6e93c18

Please sign in to comment.