v0.0.1.dev13
Pre-release
Pre-release
Notable Changes:
- new Auto-Encoders:
Ae
TripletAe
(Ae
version ofTripletVae
)AdaAe
(Ae
version ofAdaVae
)AdaNegTripletAe
(Ae
version ofAdaNegTripletVae
)
- custom dataset MNIST example in the docs
Breaking Changes
- flattened
disent.frameworks.vae
anddisent.frameworks.ae
modules,unsupervised
,weaklysupervised
, andsupervised
submodules no longer exist. - remove latent parameter classes from VAEs, VAEs now directly encode distributions with the
encode_dists()
function, this simplified a lot of other code. - Datasets now only return
'x'
in the observation dictionary if anaugment
is specified, ~5% performance boost - some dependencies are optional, more work is still required to minimise dependencies
- Removed
sample_random_traversal_factors
,sample_random_cycle_factors
fromStateSpace
and replaced with generic functionsample_random_factor_traversal
- renamed all autoencoders
AE
toAe
Other Changes:
- hdf5 dataset performance fix, now up to 5x faster when not loaded into memory
- all Auto-Encoders have new config options to disable the augment loss, recon loss, or detach the decoder so that no loss flows back through the encoder. VAEs can additionally have the regularisation loss disabled.
- new
laplace
latent distribution, can be specified in VAE configs. - triplet loss helper functions
- flatness components metric helper functions for use elsewhere:
compute_linear_score
,compute_axis_score
FftKernel
augment module inheriting fromtorch.nn.Module
, applies a channel-wise convolution to the input.to_standardised_tensor
fix for non-PIL.Image.Image
inputs- more math helper functions:
torch_normalize
normalise values along an axis between 0 and 1torch_mean_generalized
now supports thekeepdim
argument
disent.visualise.visualise_module
removed old redundant code adapted from disentanglement_libdisent.visualise.visualise_util
additionsmake_image_grid
andmake_animated_image_grid
auto-detect border colour from input dtype- replaced
cycle_factor
withget_factor_traversal
that accepts different modes:interval
andcycle
- cleaned up experiments
++ many more additions and minor fixes ++