Skip to content

Commit

Permalink
Add target tracking to BBO, with small modifications elsewhere
Browse files Browse the repository at this point in the history
  • Loading branch information
timothyatkinson authored and Higgcz committed Nov 25, 2022
1 parent 963b794 commit 72a9902
Show file tree
Hide file tree
Showing 3 changed files with 31 additions and 7 deletions.
1 change: 1 addition & 0 deletions src/evotorch/bbo/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,3 +21,4 @@


from . import bbob_noiseless_suite, bbob_problem, bbob_utilities
from .bbob_problem import BBOBProblem
4 changes: 3 additions & 1 deletion src/evotorch/bbo/bbob_noiseless_suite.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@
""" Implementation of the Real-Parameter Black-Box Optimization Benchmarking 2009 functions
"""

from typing import Type

import numpy as np
import torch

Expand Down Expand Up @@ -501,7 +503,7 @@ def _apply_function(self, z: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
]


def get_function_i(i: int) -> BBOBProblem:
def get_function_i(i: int) -> Type[BBOBProblem]:
"""Get the ith function, for i in 1 ... 24
Args:
i (int): The index of the function to obtain, between 1 and 24
Expand Down
33 changes: 27 additions & 6 deletions src/evotorch/bbo/bbob_problem.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
# limitations under the License.


from typing import Optional
from typing import List, Optional

import numpy as np
import torch
Expand All @@ -26,7 +26,8 @@ class BBOBProblem(Problem):
def __init__(
self,
solution_length: int,
initial_bounds: Optional[BoundsPairLike] = (-5, 5),
targets: List[int] = [trg for trg in range(-8, 4)],
initial_bounds: Optional[BoundsPairLike] = (-3, 3),
bounds: Optional[BoundsPairLike] = None,
dtype: Optional[DType] = torch.float64,
eval_dtype: Optional[DType] = torch.float64,
Expand Down Expand Up @@ -56,7 +57,10 @@ def __init__(

# Initialize meta variables
self.initialize_meta_variables()
self._log_closest = 1e6
self._targets, _ = torch.sort(self.make_tensor(targets), descending=True)
self._targets_hit = torch.zeros_like(self._targets, dtype=torch.bool)
self._targets_hit_at_feval = -1 * torch.ones_like(self._targets, dtype=torch.long)
self._n_fevals = 0

""" Extra BBOB-specific generator functions that ensure compliant dtype, device and generator
"""
Expand Down Expand Up @@ -181,9 +185,26 @@ def _evaluate_batch(self, batch: SolutionBatch) -> None:
z = self.map_x_to_z(x)
# Get f(x) from function application to z
f_x = self.apply_function(z, x)

n_sol = len(batch)

# Compute log distance from f_opt
log_f_x = torch.log(f_x - self._f_opt)
if torch.amin(log_f_x) < self.log_closest:
self.log_closest = torch.amin(log_f_x)
log_f_x = torch.log10(f_x - self._f_opt)

# Update any targets hit
targets_hit = log_f_x.unsqueeze(-1) < self._targets.unsqueeze(0)
indices = torch.arange(len(batch), dtype=torch.long, device=batch.device).unsqueeze(-1)
targets_hit_at_feval = torch.logical_not(targets_hit).to(torch.long) * 100 * (self._n_fevals + n_sol) + (
self._n_fevals + indices + 1
)
min_new_target_hit = targets_hit_at_feval.amin(dim=0)
new_target_hit = torch.logical_and(targets_hit.any(dim=0), torch.logical_not(self._targets_hit))

self._targets_hit_at_feval = torch.where(new_target_hit, min_new_target_hit, self._targets_hit_at_feval)
self._targets_hit = torch.logical_or(self._targets_hit, new_target_hit)

# Increment number of fitness evaluations
self._n_fevals += n_sol

# Assign fitnesses to batch
batch.set_evals(f_x)

0 comments on commit 72a9902

Please sign in to comment.