forked from iree-org/iree
-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding e2e tests for i1 mask attentions (iree-org#19312)
* New tests are aimed at testing with option `--iree-experimental-packed-i1-storage` turned on, which allows real packed i1 datatype in memory. * Only certain shapes are correct at this moment as upstream patches for emulating unaligned vector stores are not yet merged. Signed-off-by: Alan Li <[email protected]>
- Loading branch information
Showing
5 changed files
with
277 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
func.func @attention1x4x4_i1_mask() { | ||
%init = tensor.empty() : tensor<1x4x4xf32> | ||
%query = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4], | ||
[0.5, 0.6, 0.7, 0.8], | ||
[0.9, 1.0, 1.1, 1.2], | ||
[1.3, 1.4, 1.5, 1.6]]]> : tensor<1x4x4xf32> | ||
|
||
%key = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4], | ||
[0.5, 0.6, 0.7, 0.8], | ||
[0.9, 1.0, 1.1, 1.2], | ||
[1.3, 1.4, 1.5, 1.6]]]> : tensor<1x4x4xf32> | ||
%value = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4], | ||
[0.5, 0.6, 0.7, 0.8], | ||
[0.9, 1.0, 1.1, 1.2], | ||
[1.3, 1.4, 1.5, 1.6]]]> : tensor<1x4x4xf32> | ||
|
||
%i8mask = util.unfoldable_constant dense<[165, 165]> : tensor<2xi8> | ||
%mask = flow.tensor.bitcast %i8mask : tensor<2xi8> -> tensor<1x4x4xi1> | ||
|
||
%scale = arith.constant 0.5 : f32 | ||
%1 = iree_linalg_ext.attention {indexing_maps = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d2)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> ()>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d3)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d4)>]} | ||
ins(%query, %key, %value, %scale, %mask : tensor<1x4x4xf32>, | ||
tensor<1x4x4xf32>, tensor<1x4x4xf32>, f32, tensor<1x4x4xi1>) outs(%init : tensor<1x4x4xf32>) { | ||
^bb0(%arg0: f32): | ||
iree_linalg_ext.yield %arg0 : f32 | ||
} -> tensor<1x4x4xf32> | ||
check.expect_almost_eq_const( | ||
%1, | ||
dense<[[[0.57895, 0.67895, 0.77895, 0.87895], | ||
[1.09108, 1.19108, 1.29108, 1.39108], | ||
[0.774324, 0.874324, 0.974324, 1.07432], | ||
[1.22842, 1.32842, 1.42842, 1.52842]]]> : tensor<1x4x4xf32> | ||
) : tensor<1x4x4xf32> | ||
return | ||
} | ||
|
||
func.func @attention1x4x4_i1_mask_all_ones() { | ||
%init = tensor.empty() : tensor<1x4x4xf32> | ||
%query = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4], | ||
[0.5, 0.6, 0.7, 0.8], | ||
[0.9, 1.0, 1.1, 1.2], | ||
[1.3, 1.4, 1.5, 1.6]]]> : tensor<1x4x4xf32> | ||
|
||
%key = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4], | ||
[0.5, 0.6, 0.7, 0.8], | ||
[0.9, 1.0, 1.1, 1.2], | ||
[1.3, 1.4, 1.5, 1.6]]]> : tensor<1x4x4xf32> | ||
%value = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4], | ||
[0.5, 0.6, 0.7, 0.8], | ||
[0.9, 1.0, 1.1, 1.2], | ||
[1.3, 1.4, 1.5, 1.6]]]> : tensor<1x4x4xf32> | ||
|
||
%i8mask = util.unfoldable_constant dense<[255, 255]> : tensor<2xi8> | ||
%mask = flow.tensor.bitcast %i8mask : tensor<2xi8> -> tensor<1x4x4xi1> | ||
|
||
%scale = arith.constant 0.5 : f32 | ||
%1 = iree_linalg_ext.attention {indexing_maps = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d2)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> ()>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d3)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d4)>]} | ||
ins(%query, %key, %value, %scale, %mask : tensor<1x4x4xf32>, | ||
tensor<1x4x4xf32>, tensor<1x4x4xf32>, f32, tensor<1x4x4xi1>) outs(%init : tensor<1x4x4xf32>) { | ||
^bb0(%arg0: f32): | ||
iree_linalg_ext.yield %arg0 : f32 | ||
} -> tensor<1x4x4xf32> | ||
check.expect_almost_eq_const( | ||
%1, | ||
dense<[[[0.798884, 0.898884, 0.998884, 1.09888], | ||
[0.941939, 1.04194, 1.14194, 1.24194], | ||
[1.05371, 1.15371, 1.25371, 1.35371], | ||
[1.13295, 1.23295, 1.33295, 1.43295]]]> : tensor<1x4x4xf32> | ||
) : tensor<1x4x4xf32> | ||
return | ||
} | ||
|
||
func.func @attention1x4x4_i1_mask_tril() { | ||
%init = tensor.empty() : tensor<1x4x4xf32> | ||
%query = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4], | ||
[0.5, 0.6, 0.7, 0.8], | ||
[0.9, 1.0, 1.1, 1.2], | ||
[1.3, 1.4, 1.5, 1.6]]]> : tensor<1x4x4xf32> | ||
|
||
%key = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4], | ||
[0.5, 0.6, 0.7, 0.8], | ||
[0.9, 1.0, 1.1, 1.2], | ||
[1.3, 1.4, 1.5, 1.6]]]> : tensor<1x4x4xf32> | ||
%value = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4], | ||
[0.5, 0.6, 0.7, 0.8], | ||
[0.9, 1.0, 1.1, 1.2], | ||
[1.3, 1.4, 1.5, 1.6]]]> : tensor<1x4x4xf32> | ||
|
||
%i8mask = util.unfoldable_constant dense<[140, 239]> : tensor<2xi8> | ||
%mask = flow.tensor.bitcast %i8mask : tensor<2xi8> -> tensor<1x4x4xi1> | ||
|
||
%scale = arith.constant 0.5 : f32 | ||
%1 = iree_linalg_ext.attention {indexing_maps = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d2)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> ()>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d3)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d4)>]} | ||
ins(%query, %key, %value, %scale, %mask : tensor<1x4x4xf32>, | ||
tensor<1x4x4xf32>, tensor<1x4x4xf32>, f32, tensor<1x4x4xi1>) outs(%init : tensor<1x4x4xf32>) { | ||
^bb0(%arg0: f32): | ||
iree_linalg_ext.yield %arg0 : f32 | ||
} -> tensor<1x4x4xf32> | ||
check.expect_almost_eq_const( | ||
%1, | ||
dense<[[[1.11993, 1.21993, 1.31993, 1.41993], | ||
[1.3, 1.4, 1.5, 1.6], | ||
[1.05371, 1.15371, 1.25371, 1.35371], | ||
[1.15549, 1.25549, 1.35549, 1.45549]]]> : tensor<1x4x4xf32> | ||
) : tensor<1x4x4xf32> | ||
return | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters