Skip to content

Commit

Permalink
Add test that shards, exports and runs with IREE a Conv2DLayer
Browse files Browse the repository at this point in the history
In general we should avoid having many end-to-end tests, but I decided to add
it since it was the isolation of a real problem
iree-org/iree#18283
and I already had the test.

We would like to have at least several E2E tests of tiny models that run on
every PR.
  • Loading branch information
sogartar committed Sep 3, 2024
1 parent 89cc4c5 commit 0275524
Show file tree
Hide file tree
Showing 4 changed files with 281 additions and 3 deletions.
7 changes: 4 additions & 3 deletions sharktank/sharktank/ops/sharded_impls.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ def conv2d_all_split(
input.is_replicated or input.shard_dim == 1
), "Only sharding of input channel dimension is supported"
assert (
weight.shard_dim == 0 and bias.shard_dim == 0
bias is None or weight.shard_dim == 0 and bias.shard_dim == 0
), "Only sharding of output channel dimension is supported"

# TODO: allow for implementation where we don't all-gather, but gather
Expand Down Expand Up @@ -146,7 +146,7 @@ def conv2d_replicated_input_split_weight_and_bias(
assert input.shard_count == weight.shard_count
assert bias is None or weight.shard_count == bias.shard_count
assert (
weight.shard_dim == 0 and bias.shard_dim == 0
bias is None or weight.shard_dim == 0 and bias.shard_dim == 0
), "Only sharding of output channel dimension is supported"
assert groups == 1

Expand Down Expand Up @@ -189,7 +189,8 @@ def conv2d_split_weight_and_bias(
accum_dtype,
) -> SplitPrimitiveTensor:
assert accum_dtype is None, "accum_dtype not supported"
assert weight.shard_count == bias.shard_count
if bias is not None:
assert weight.shard_count == bias.shard_count

# Output channels dimension is split.
if weight.shard_dim == 0 and groups == 1:
Expand Down
56 changes: 56 additions & 0 deletions sharktank/tests/layers/conftest.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
# Copyright 2024 Advanced Micro Devices, Inc
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

import pytest
from pathlib import Path
from typing import Optional


def pytest_addoption(parser):
parser.addoption(
"--mlir",
type=Path,
default=None,
help="Path to exported MLIR program. If not specified a temporary file will be used.",
)
parser.addoption(
"--module",
type=Path,
default=None,
help="Path to exported IREE module. If not specified a temporary file will be used.",
)
parser.addoption(
"--parameters",
type=Path,
default=None,
help="Exported model parameters. If not specified a temporary file will be used.",
)
parser.addoption(
"--caching",
action="store_true",
default=False,
help="Load cached results if present instead of recomputing.",
)


@pytest.fixture(scope="session")
def mlir_path(pytestconfig: pytest.Config) -> Optional[Path]:
return pytestconfig.getoption("mlir")


@pytest.fixture(scope="session")
def module_path(pytestconfig: pytest.Config) -> Optional[Path]:
return pytestconfig.getoption("module")


@pytest.fixture(scope="session")
def parameters_path(pytestconfig: pytest.Config) -> Optional[Path]:
return pytestconfig.getoption("parameters")


@pytest.fixture(scope="session")
def caching(pytestconfig: pytest.Config) -> Optional[Path]:
return pytestconfig.getoption("caching")
212 changes: 212 additions & 0 deletions sharktank/tests/layers/sharded_conv2d_with_iree_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
import unittest

# Copyright 2024 Advanced Micro Devices, Inc
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

from pathlib import Path
import tempfile
import torch
from shark_turbine import aot
from sharktank.models.punet.layers import Conv2DLayer
from sharktank import ops
from sharktank.types import (
Dataset,
DefaultPrimitiveTensor,
Theta,
ShardedTensor,
SplitPrimitiveTensor,
unbox_tensor,
)
from sharktank.types.sharding import Conv2DSplitOutputChannelSharding
import iree.runtime
from typing import List, Optional
import os

vm_context: iree.runtime.VmContext = None


def get_compiler_args(target_device_kind: str, shard_count: int) -> List[str]:
result = [
f"--iree-hal-target-device={target_device_kind}[{i}]"
for i in range(shard_count)
]
return result


def compile_iree_module(
export_output: aot.ExportOutput, module_path: str, shard_count: int
):
export_output.session.set_flags(
*get_compiler_args(target_device_kind="llvm-cpu", shard_count=shard_count)
)
export_output.compile(save_to=module_path, target_backends=None)


# TODO: improve IREE's Python API to be more concise in a multi-device context.
# This run function should be way shorter.
def run_iree_module(
sharded_input_image: ShardedTensor,
module_path: str,
parameters_path: str,
) -> ShardedTensor:
shard_count = sharded_input_image.shard_count
hal_driver = iree.runtime.get_driver("local-task")
vm_instance = iree.runtime.VmInstance()
available_devices = hal_driver.query_available_devices()
# Use the same actual device for all devices.
devices = [
hal_driver.create_device(available_devices[0]) for _ in range(shard_count)
]
hal_module = iree.runtime.create_hal_module(instance=vm_instance, devices=devices)
params_path = Path(parameters_path)
# TODO: make IREE able to load the parameters from the top parameter file
# without having to specify the parameter file for each shard separately.
parameter_index = iree.runtime.ParameterIndex()
for i in range(shard_count):
parameter_index.load(
file_path=str(
Path(params_path).with_suffix(f".rank{i}{params_path.suffix}")
)
)
parameter_provider = parameter_index.create_provider(scope="model")
parameters_module = iree.runtime.create_io_parameters_module(
vm_instance, parameter_provider
)

vm_module = iree.runtime.VmModule.mmap(vm_instance, str(module_path))

# The context needs to be destroyed after the buffers, although
# it is not associate with them on the API level.
global vm_context
vm_context = iree.runtime.VmContext(
instance=vm_instance, modules=(hal_module, parameters_module, vm_module)
)
module_input_args = [
iree.runtime.asdevicearray(
devices[i], sharded_input_image.shards[i].as_torch().to("cpu").numpy()
)
for i in range(shard_count)
]

vm_function = vm_module.lookup_function("main")
invoker = iree.runtime.FunctionInvoker(
vm_context=vm_context,
# TODO: rework iree.runtime.FunctionInvoker interface for multiple devices.
# This works, but does not look right.
device=devices[0],
vm_function=vm_function,
)
results = invoker(*module_input_args)
shards = [torch.tensor(tensor.to_host()) for tensor in results]
return SplitPrimitiveTensor(ts=shards, shard_dim=1)


def run_test_sharded_conv2d_with_iree(
mlir_path: Path, module_path: Path, parameters_path: Path, caching: bool
):
torch.set_default_dtype(torch.float32)
torch.manual_seed(123456)
batches = 2
in_channels = 6
out_channels = 8
height = 11
width = 13
kernel_height = 5
kernel_width = 5
shard_count = 2
unsharded_theta = Theta(
{
"weight": DefaultPrimitiveTensor(
data=torch.rand(
out_channels,
in_channels,
kernel_height,
kernel_width,
)
),
}
)
unsharded_theta.rename_tensors_to_paths()

if not caching or not os.path.exists(parameters_path):
sharding_spec = Conv2DSplitOutputChannelSharding(shard_count=shard_count)
sharded_theta = ops.reshard(unsharded_theta, sharding_spec)

# Roundtrip the dataset, which anchors the tensors as parameters to be loaded
# vs constants to be frozen (TODO: This is a bit wonky).
sharded_dataset = Dataset({}, sharded_theta)
sharded_dataset.save(parameters_path)

sharded_dataset = Dataset.load(parameters_path)

input_image = torch.rand(
batches,
in_channels,
height,
width,
)

sharded_torch_module = Conv2DLayer(sharded_dataset.root_theta, padding=(0, 0))
sharded_input_image = ops.reshard_split(input_image, dim=1, count=shard_count)
expected_result = sharded_torch_module(sharded_input_image)

if not caching or not os.path.exists(module_path):
exported_module = aot.export(
sharded_torch_module,
args=(sharded_input_image,),
)
exported_module.save_mlir(mlir_path)

compile_iree_module(
export_output=exported_module,
module_path=module_path,
shard_count=shard_count,
)

actual_result = run_iree_module(
sharded_input_image=sharded_input_image,
module_path=module_path,
parameters_path=parameters_path,
)
assert len(actual_result.shards) == len(expected_result.shards)
assert actual_result.shard_dim == expected_result.shard_dim
# TODO: reenable this check once numerical issues are resolved.
# See https://github.com/iree-org/iree/issues/18283
# for actual_shard, expected_shard in zip(
# actual_result.shards, expected_result.shards
# ):
# torch.testing.assert_close(
# unbox_tensor(actual_shard), unbox_tensor(expected_shard)
# )


def test_sharded_conv2d_with_iree(
mlir_path: Optional[Path],
module_path: Optional[Path],
parameters_path: Optional[Path],
caching: bool,
):
"""Test sharding, exporting and running with IREE a 2D convolution layer."""

with tempfile.TemporaryDirectory(
# TODO: verify hypothesis and remove ignore_cleanup_errors=True after a fix.
# torch.export.export is spawning some processes that don't exit when the
# function returns, this causes some objects to not get destroyed, which
# in turn holds files params.rank0.irpa and params.rank1.irpa open.
ignore_cleanup_errors=True
) as tmp_dir:
mlir_path = Path(tmp_dir) / "model.mlir" if mlir_path is None else mlir_path
module_path = (
Path(tmp_dir) / "module.vmfb" if module_path is None else module_path
)
parameters_path = (
Path(tmp_dir) / "params.irpa"
if parameters_path is None
else parameters_path
)
run_test_sharded_conv2d_with_iree(
mlir_path, module_path, parameters_path, caching
)
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,8 @@ def compile_iree_module(
export_output.compile(save_to=module_path, target_backends=None)


# TODO: improve IREE's Python API to be more concise in a multi-device context.
# This run function should be way shorter.
def run_iree_module(
sharded_input_image: ShardedTensor,
sharded_input_time_emb: ShardedTensor,
Expand Down Expand Up @@ -163,6 +165,12 @@ def run_test_sharded_resnet_block_with_iree(
temb_channels=input_time_emb_shape[1],
time_embedding_norm="default",
)
input_time_emb = torch.load(
"/home/bpetkant/ws/sharktank/experiments/sharding/punet/resnet_block/conv2-output.pt"
)
input_image = torch.load(
"/home/bpetkant/ws/sharktank/experiments/sharding/punet/resnet_block/input_tensor.pt"
)
sharded_input_image = ops.reshard_split(input_image, dim=1, count=shard_count)
sharded_input_time_emb = ops.replicate(input_time_emb, count=shard_count)
expected_result = sharded_resnet_block(sharded_input_image, sharded_input_time_emb)
Expand Down Expand Up @@ -206,6 +214,7 @@ def run_test_sharded_resnet_block_with_iree(
)
assert len(actual_result.shards) == len(expected_result.shards)
# TODO: reenable this check once numerical issues are resolved.
# See https://github.com/iree-org/iree/issues/18283
# for actual_shard, expected_shard in zip(
# actual_result.shards, expected_result.shards
# ):
Expand Down

0 comments on commit 0275524

Please sign in to comment.