-
Notifications
You must be signed in to change notification settings - Fork 30
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
integrate shortfin_apps llm test into pytest suite
- Loading branch information
Showing
2 changed files
with
117 additions
and
75 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
import pytest | ||
import subprocess | ||
import time | ||
import requests | ||
import os | ||
import json | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def setup_environment(): | ||
# Create necessary directories | ||
os.makedirs("/tmp/sharktank/llama", exist_ok=True) | ||
|
||
# Download model if it doesn't exist | ||
model_path = "/tmp/sharktank/llama/open-llama-3b-v2-f16.gguf" | ||
if not os.path.exists(model_path): | ||
subprocess.run( | ||
"huggingface-cli download --local-dir /tmp/sharktank/llama SlyEcho/open_llama_3b_v2_gguf open-llama-3b-v2-f16.gguf", | ||
shell=True, | ||
check=True, | ||
) | ||
|
||
# Set up tokenizer if it doesn't exist | ||
tokenizer_path = "/tmp/sharktank/llama/tokenizer.json" | ||
if not os.path.exists(tokenizer_path): | ||
tokenizer_setup = """ | ||
from transformers import AutoTokenizer | ||
tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_3b_v2") | ||
tokenizer.save_pretrained("/tmp/sharktank/llama") | ||
""" | ||
subprocess.run(["python", "-c", tokenizer_setup], check=True) | ||
|
||
# Export model if it doesn't exist | ||
mlir_path = "/tmp/sharktank/llama/model.mlir" | ||
config_path = "/tmp/sharktank/llama/config.json" | ||
if not os.path.exists(mlir_path) or not os.path.exists(config_path): | ||
subprocess.run( | ||
[ | ||
"python", | ||
"-m", | ||
"sharktank.examples.export_paged_llm_v1", | ||
f"--gguf-file={model_path}", | ||
f"--output-mlir={mlir_path}", | ||
f"--output-config={config_path}", | ||
], | ||
check=True, | ||
) | ||
|
||
# Compile model if it doesn't exist | ||
vmfb_path = "/tmp/sharktank/llama/model.vmfb" | ||
if not os.path.exists(vmfb_path): | ||
subprocess.run( | ||
[ | ||
"iree-compile", | ||
mlir_path, | ||
"--iree-hal-target-backends=rocm", | ||
"--iree-hip-target=gfx1100", | ||
"-o", | ||
vmfb_path, | ||
], | ||
check=True, | ||
) | ||
|
||
# Write config if it doesn't exist | ||
edited_config_path = "/tmp/sharktank/llama/edited_config.json" | ||
if not os.path.exists(edited_config_path): | ||
config = { | ||
"module_name": "module", | ||
"module_abi_version": 1, | ||
"max_seq_len": 2048, | ||
"attn_head_count": 32, | ||
"attn_head_dim": 100, | ||
"prefill_batch_sizes": [4], | ||
"decode_batch_sizes": [4], | ||
"transformer_block_count": 26, | ||
"paged_kv_cache": {"block_seq_stride": 16, "device_block_count": 256}, | ||
} | ||
with open(edited_config_path, "w") as f: | ||
json.dump(config, f) | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def llm_server(setup_environment): | ||
# Start the server | ||
server_process = subprocess.Popen( | ||
[ | ||
"python", | ||
"-m", | ||
"shortfin_apps.llm.server", | ||
"--tokenizer=/tmp/sharktank/llama/tokenizer.json", | ||
"--model_config=/tmp/sharktank/llama/edited_config.json", | ||
"--vmfb=/tmp/sharktank/llama/model.vmfb", | ||
"--parameters=/tmp/sharktank/llama/open-llama-3b-v2-f16.gguf", | ||
"--device=hip", | ||
] | ||
) | ||
|
||
# Wait for server to start | ||
time.sleep(5) | ||
|
||
yield server_process | ||
|
||
# Teardown: kill the server | ||
server_process.terminate() | ||
server_process.wait() | ||
|
||
|
||
def test_llm_server(llm_server): | ||
# Here you would typically make requests to your server | ||
# and assert on the responses | ||
# For example: | ||
# response = requests.post("http://localhost:8000/generate", json={"prompt": "Hello, world!"}) | ||
# assert response.status_code == 200 | ||
# assert "generated_text" in response.json() | ||
|
||
# For now, we'll just check if the server process is running | ||
assert llm_server.poll() is None |