-
Notifications
You must be signed in to change notification settings - Fork 64
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
491 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
import { isTypedArray, type TypedArray } from 'webgpu-utils'; | ||
import { BufferSet } from '../regl_rendering'; | ||
import { WebGPUBufferLocation } from '../types'; | ||
// I track locations on buffers like this. | ||
// We keep track of both size -- the number of meaningful data bytes | ||
// and paddedSize -- the number of bytes including 256-byte padding. | ||
|
||
export class WebGPUBufferSet extends BufferSet<GPUBuffer, WebGPUBufferLocation> { | ||
// Copied with alterations from deepscatter | ||
|
||
// An abstraction creating an expandable set of buffers that can be subdivided | ||
// to put more than one variable on the same | ||
// block of memory. Reusing buffers this way can have performance benefits over allocating | ||
// multiple different buffers for each small block used. | ||
|
||
// The general purpose here is to call 'allocate_block' that releases a block of memory | ||
// to use in creating a new array to be passed to regl. | ||
|
||
public device: GPUDevice; | ||
private stagingBuffer: GPUBuffer; | ||
public usage: number; | ||
|
||
public store: Map<string, WebGPUBufferLocation> = new Map(); | ||
|
||
/** | ||
* | ||
* @param regl the Regl context we're using. | ||
* @param buffer_size The number of bytes on each strip of memory that we'll ask for. | ||
*/ | ||
|
||
constructor( | ||
device: GPUDevice, | ||
buffer_size: number, | ||
usage: number = GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_DST | GPUBufferUsage.COPY_SRC | ||
) { | ||
super(buffer_size) | ||
this.device = device; | ||
// Track the ends in case we want to allocate smaller items. | ||
this.usage = usage; | ||
this.generate_new_buffer(); | ||
this.stagingBuffer = device.createBuffer({ | ||
size: buffer_size, | ||
usage: GPUBufferUsage.COPY_SRC | GPUBufferUsage.MAP_WRITE, | ||
mappedAtCreation: false // saves a little trouble in the passThrough function | ||
}); | ||
} | ||
|
||
private async passThroughStagingBuffer(values: Uint32Array, bufferLocation: WebGPUBufferLocation) { | ||
// WebGPU | ||
const { buffer, offset, paddedSize } = bufferLocation; | ||
while (this.stagingBuffer.mapState !== 'unmapped') { | ||
// Wait in line for a millisecond. | ||
// Would be better to hold a queue and apply more than one of these at once. | ||
await new Promise((resolve) => setTimeout(resolve, 1)); | ||
} | ||
await this.stagingBuffer.mapAsync(GPUMapMode.WRITE, 0, paddedSize); | ||
new Uint32Array(this.stagingBuffer.getMappedRange(0, values.byteLength)).set(values); | ||
this.stagingBuffer.unmap(); | ||
const commandEncoder = this.device.createCommandEncoder(); | ||
commandEncoder.copyBufferToBuffer(this.stagingBuffer, 0, buffer, offset, paddedSize); | ||
this.device.queue.submit([commandEncoder.finish()]); | ||
} | ||
|
||
register(k: string, v: WebGPUBufferLocation) { | ||
this.store.set(k, v); | ||
} | ||
|
||
async set(key: string, value: TypedArray) { | ||
if (this.store.has(key)) { | ||
throw new Error(`Key ${key} already exists in buffer set.`); | ||
} | ||
const size = value.byteLength; | ||
const paddedSize = Math.ceil(size / 256) * 256; | ||
|
||
const { buffer, offset } = this.allocate_block(paddedSize); | ||
|
||
// If it's a typed array, we can just copy it directly. | ||
// cast it to uint32array | ||
const v2 = value; | ||
const data = new Uint32Array(v2.buffer, v2.byteOffset, v2.byteLength / 4); | ||
const description = { buffer, offset, size, paddedSize }; | ||
await this.passThroughStagingBuffer(data, description); | ||
this.register(key, description); | ||
} | ||
|
||
_create_buffer() : GPUBuffer { | ||
return this.device.createBuffer({ | ||
size: this.buffer_size, | ||
usage: this.usage, | ||
mappedAtCreation: false | ||
}) | ||
} | ||
|
||
_create_leftover_buffer() : WebGPUBufferLocation { | ||
return { | ||
buffer: this.buffers[0], | ||
offset: this.pointer, | ||
stride: 4, // meaningless here. | ||
byte_size: this.buffer_size - this.pointer, | ||
paddedSize: this.buffer_size - this.pointer | ||
} | ||
} | ||
} | ||
|
||
|
||
export function createSingletonBuffer( | ||
device: GPUDevice, | ||
data: Uint32Array | Int32Array | Float32Array | ArrayBuffer, | ||
usage: number | ||
): GPUBuffer { | ||
// Creates a disposable singleton buffer. | ||
// ReadonlyBufferSet ought to provide better performance; but | ||
// this allows more different buffer sizes and easier destruction. | ||
const buffer = device.createBuffer({ | ||
size: data.byteLength, | ||
usage, | ||
mappedAtCreation: true | ||
}); | ||
const mappedRange = buffer.getMappedRange(); | ||
if (isTypedArray(data)) { | ||
new Uint32Array(mappedRange).set(data as TypedArray); | ||
} else { | ||
new Uint32Array(mappedRange).set(new Uint32Array(data as ArrayBuffer)); | ||
} | ||
buffer.unmap(); | ||
return buffer; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
import { createSingletonBuffer, WebGPUBufferSet } from "./buffertools"; | ||
import { StatefulGPU } from "./lib"; | ||
|
||
type TinyForestParams = { | ||
nTrees: number; | ||
depth: number; | ||
// The number of features to consider at each split. | ||
maxFeatures: number; | ||
D: number; | ||
} | ||
|
||
const defaultTinyForestParams : TinyForestParams = { | ||
nTrees: 128, | ||
depth: 8, | ||
maxFeatures: 32, | ||
D: 768, | ||
} | ||
|
||
export class TinyForest extends StatefulGPU { | ||
params: TinyForestParams; | ||
|
||
private _bootstrapSamples?: GPUBuffer; // On the order of 100 KB | ||
protected _forests?: GPUBuffer // On the order of 10 MB. | ||
// private trainedThrough: number = 0; | ||
constructor( | ||
device: GPUDevice, | ||
bufferSize = 1024 * 1024 * 256, | ||
t: Partial<TinyForestParams> = {}) { | ||
super(device, bufferSize) | ||
this.params = {...defaultTinyForestParams, ...t} | ||
this.initializeForestsToZero() | ||
this.bufferSet = new WebGPUBufferSet(device, bufferSize); | ||
} | ||
|
||
countPipeline(): GPUComputePipeline { | ||
const { device } = this; | ||
// const { maxFeatures, nTrees } = this.params | ||
// const OPTIONS = 2; | ||
// const countBuffer = device.createBuffer({ | ||
// size: OPTIONS * maxFeatures * nTrees * 4, | ||
// usage: GPUBufferUsage.STORAGE & GPUBufferUsage.COPY_SRC, | ||
// mappedAtCreation: false | ||
// }); | ||
|
||
const layout = device.createBindGroupLayout({ | ||
entries: [ | ||
{ | ||
// features buffer; | ||
binding: 0, | ||
visibility: GPUShaderStage.COMPUTE, | ||
buffer: { type: 'storage' } | ||
}, | ||
{ | ||
// dims to check array; | ||
binding: 1, | ||
visibility: GPUShaderStage.COMPUTE, | ||
buffer: { type: 'storage' } | ||
}, | ||
{ | ||
// output count buffer. | ||
binding: 2, | ||
visibility: GPUShaderStage.COMPUTE, | ||
buffer: { type: 'storage' } | ||
} | ||
] | ||
}) | ||
|
||
// const subsetsToCheck = this.chooseNextFeatures(); | ||
const pipelineLayout = device.createPipelineLayout({ bindGroupLayouts: [layout] }); | ||
|
||
const shaderModule = device.createShaderModule({ code: ` | ||
@group(0) @binding(0) var<storage, read> features: array<u32>; | ||
@group(0) @binding(1) var<storage, read> dimsToCheck: array<u16>; | ||
@group(0) @binding(2) var<storage, write> counts: array<u32>; | ||
@compute @workgroup_size(64) | ||
//TODOD HERE | ||
` }); | ||
|
||
|
||
return device.createComputePipeline({ | ||
layout: pipelineLayout, | ||
compute: { | ||
module: shaderModule, | ||
entryPoint: 'main' | ||
} | ||
}); | ||
} | ||
|
||
//@ts-expect-error foo | ||
private chooseNextFeatures(n = 32) { | ||
console.log({n}) | ||
const { maxFeatures, nTrees, D } = this.params; | ||
const features = new Uint16Array(maxFeatures * D); | ||
for (let i = 0; i < nTrees; i++) { | ||
const set = new Set<number>(); | ||
while (set.size < maxFeatures) { | ||
set.add(Math.floor(Math.random() * D)); | ||
} | ||
const arr = new Uint16Array([...set].sort()); | ||
features.set(arr, i * maxFeatures); | ||
} | ||
return createSingletonBuffer( | ||
this.device, | ||
features, | ||
GPUBufferUsage.STORAGE | ||
) | ||
} | ||
|
||
|
||
|
||
initializeForestsToZero() { | ||
// Each tree is a set of bits; For every possible configuration | ||
// the first D indicating | ||
// the desired outcome for the dimension, | ||
// the second D indicating whether the bits in those | ||
// positions are to be considered in checking if the tree | ||
// fits. There are 2**depth bitmasks for each dimension--each point | ||
// will match only one, and part of the inference task is determining which one. | ||
|
||
const treeSizeInBytes = | ||
2 * this.params.D * (2 ** this.params.depth) / 8; | ||
|
||
const data = new Uint8Array(treeSizeInBytes * this.params.nTrees) | ||
this._forests = createSingletonBuffer( | ||
this.device, | ||
data, | ||
GPUBufferUsage.STORAGE | ||
) | ||
} | ||
|
||
|
||
// Rather than actually bootstrap, we generate a single | ||
// list of 100,000 numbers drawn from a poisson distribution. | ||
// These serve as weights for draws with replacement; to | ||
// bootstrap any given record batch, we take a sequence of | ||
// numbers from the buffer with offset i. | ||
get bootstrapSamples() { | ||
if (this._bootstrapSamples) { | ||
return this._bootstrapSamples | ||
} else { | ||
const arr = new Uint8Array(100000) | ||
for (let i = 0; i < arr.length; i++) { | ||
arr[i] = poissonRandomNumber() | ||
} | ||
this._bootstrapSamples = createSingletonBuffer( | ||
this.device, | ||
arr, | ||
GPUBufferUsage.STORAGE | ||
) | ||
return this._bootstrapSamples | ||
} | ||
} | ||
|
||
|
||
} | ||
|
||
|
||
function poissonRandomNumber() : number { | ||
let p = 1.0; | ||
let k = 0; | ||
|
||
do { | ||
k++; | ||
p *= Math.random(); | ||
} while (p > 1/Math.E); | ||
|
||
return k - 1; | ||
} | ||
|
Oops, something went wrong.