Numpoly is a generic library for creating, manipulating and evaluating
arrays of polynomials based on numpy.ndarray
objects.
Table of Contents:
- Intuitive interface for users experienced with
numpy
, as the library provides a high level of compatibility with thenumpy.ndarray
, including fancy indexing, broadcasting,numpy.dtype
, vectorized operations to name a few. - Computationally fast evaluations of lots of functionality inherent from
numpy
. - Vectorized polynomial evaluation.
- Support for arbitrary number of dimensions.
- Native support for lots of
numpy.<name>
functions usingnumpy
's compatibility layer (which also exists asnumpoly.<name>
equivalents). - Support for polynomial division through the operators
/
,%
anddivmod
. - Extra polynomial specific attributes exposed on the polynomial objects like
poly.exponents
,poly.coefficients
,poly.indeterminants
etc. - Polynomial derivation through functions like
numpoly.derivative
,numpoly.gradient
,numpoly.hessian
etc. - Decompose polynomial sums into vector of addends using
numpoly.decompose
. - Variable substitution through
numpoly.call
.
Installation should be straight forward:
pip install numpoly
Constructing polynomial is typically done using one of the available constructors:
>>> import numpoly
>>> numpoly.monomial(start=0, stop=3, dimensions=2)
polynomial([1, q0, q0**2, q1, q0*q1, q1**2])
It is also possible to construct your own from symbols together with numpy:
>>> import numpy
>>> q0, q1 = numpoly.variable(2)
>>> numpoly.polynomial([1, q0**2-1, q0*q1, q1**2-1])
polynomial([1, q0**2-1, q0*q1, q1**2-1])
Or in combination with numpy objects using various arithmetics:
>>> q0**numpy.arange(4)-q1**numpy.arange(3, -1, -1)
polynomial([-q1**3+1, -q1**2+q0, q0**2-q1, q0**3-1])
The constructed polynomials can be evaluated as needed:
>>> poly = 3*q0+2*q1+1
>>> poly(q0=q1, q1=[1, 2, 3])
polynomial([3*q1+3, 3*q1+5, 3*q1+7])
Or manipulated using various numpy functions:
>>> numpy.reshape(q0**numpy.arange(4), (2, 2))
polynomial([[1, q0],
[q0**2, q0**3]])
>>> numpy.sum(numpoly.monomial(13)[::3])
polynomial(q0**12+q0**9+q0**6+q0**3+1)