Please note: This repository does not contain production-grade code and is only intended for demonstration purposes.
EDC Data Dashboard is a dev frontend application for EDC Management API.
Developer documentation can be found under docs/developer, where the main concepts and decisions are captured as decision records.
Should you want to run the frontend on your development machine, you'll have to configure some backend values. Those are stored in app.config.json
, and
by default contain the following:
{
"managementApiUrl": "{{managementApiUrl}}",
"catalogUrl": "{{catalogUrl}}",
"storageAccount": "{{account}}",
"storageExplorerLinkTemplate": "storageexplorer://v=1&accountid=/subscriptions/{{subscriptionId}}/resourceGroups/{{resourceGroup}}/providers/Microsoft.Storage/storageAccounts/{{account}}&subscriptionid={{subscriptionId}}&resourcetype=Azure.BlobContainer&resourcename={{container}}",
}
Substitute the values as necessary:
apiKey
: enter here what your EDC instance expects in thx-api-key
headercatalogUrl
: prepend your connector URL, e.g.http://localhost
, assuming your catalog endpoint is exposed at port 8181, which is the defaultmanagementApiUrl
: prepend your connector URL, e.g.http://localhost
, assuming your IDS endpoint is exposed at port 9191storageAccount
: insert the name of an Azure Blob Storage account to which the connector has access, otherwise data transfers won't work.
Be extra careful NOT to commit those changes, as they might leak potentially sensitive information!!!
As some extra safety consider running git udpate-index --assume-unchanged src/assets/config/app.config.json
before changing this file.
To test the correct functionality locally you can spin up a local docker compose
that will load two data-dashboard
s service and two connector
s, one for consumer
and one for provider.
Just start the docker compose.
docker compose up
Consumer data-dashboard will be available at http://localhost:18080
Provider data-dashboard will be available at http://localhost:28080
To have a quicker development cycle, you can also run the DataDashboard from the
host machine using npm start
, sending request against the connector loaded by
docker compose.
First you need to change the app.config.json
this way:
{
...
"managementApiUrl": "http://localhost:4200/management",
"catalogUrl": "http://localhost:4200/management",
...
}
Then start the local DataDashboard:
npm start
The DataDashboard will be available at http://localhost:4200
Create a resource group and container registry:
export RESOURCE_GROUP=edc-data-dashboard
export ACR_NAME=edcdatadashboard
az group create --resource-group $RESOURCE_GROUP --location westeurope -o none
az acr create --resource-group $RESOURCE_GROUP --name $ACR_NAME --sku Standard --location westeurope --admin-enabled -o none
Dockerize the application and push it to the registry by running:
az acr build --registry $ACR_NAME --image edc-showcase/edc-data-dashboard:latest .
The docker image is now ready to be deployed to Azure Container Instances (ACI). The app.config.json
file contains configuration which is fetched by the application at startup. This file can be overridden at deployment time by mounting a secret on assets/config
. For each deployment you need to provide the corresponding connector backend URL, the storage account name and the API key using this secret. Deploy to ACI using the following command:
export CONNECTOR_DATA_URL=<CONNECTOR_DATA_URL>
export CONNECTOR_CATALOG_URL=<CONNECTOR_CATALOG_URL>
export STORAGE_ACCOUNT=<STORAGE_ACCOUNT>
export API_KEY=<API_KEY>
# deploy to ACI (when prompted for credentials use the username/password as available in Azure Portal: ACR->Access Keys)
az container create --image ${ACR_NAME}.azurecr.io/edc-showcase/edc-data-dashboard:latest \
--resource-group $RESOURCE_GROUP \
--name edc-data-dashboard \
--secrets "app.config.json"="{\"managementApiUrl\": \"$CONNECTOR_DATA_URL\", \"catalogUrl\": \"$CONNECTOR_CATALOG_URL\", \"storageAccount\": \"$STORAGE_ACCOUNT\", \"apiKey\": \"$API_KEY\"}" \
--secrets-mount-path /usr/share/nginx/html/assets/config \
--dns-name-label edc-data-dashboard
See how to contribute for details.
INESData (https://inesdata-project.eu/) is a Spanish Incubator of Data Spaces and AI Services using federated infrastructures in the Cloud. It focuses on simplifying the tech adoption and accelerating the industry deployment of the national Data Space ecosystem by contributing with four Data Spaces (language, mobility, legal and public tender, and media) to demonstrate the benefits of Data Spaces and applicability of the related technology. It is funded by the Spanish Ministry of Digital Transformation and NextGenerationEU, in the framework of the UNICO I+D CLOUD Program - Real Decreto 959/2022.
Este trabajo ha recibido financiación del proyecto INESData (Infraestructura para la INvestigación de ESpacios de DAtos distribuidos en UPM), un proyecto financiado en el contexto de la convocatoria UNICO I+D CLOUD del Ministerio para la Transformación Digital y de la Función Pública en el marco del PRTR financiado por Unión Europea (NextGenerationEU)