-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqPCR.py
executable file
·461 lines (436 loc) · 23.9 KB
/
qPCR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#! /usr/bin/env python
import math,getopt,sys,sets,operator
LOG_FILENAME = 'qPCR.log'
logout=open(LOG_FILENAME,'w')
#/* FUNCTIONS */
def product(thisList): #prodcut
result=1.0
for item in thisList:
result=result*float(item)
return result
def geometric(thisList): #geometric mean
return math.pow(product(thisList),1.0/float(len(thisList)))
def deltaCt(theseSamples,eff,theseControlGenes,whichRef): # calculate delta CT
#calculate Quantities
controlQ,sampleQ,minCT,allCTs={},{},{},[]
# collect all Ct mean data and output the minium mean Ct per gene
for geneName in theseSamples.keys(): # goes through all meantCt and stdvCt for the genes
vector=[]
for tissueName in theseSamples[geneName].keys(): # goes through tissuees
for sampleID in theseSamples[geneName][tissueName].keys(): #goes through sample names
vector.append(theseSamples[geneName][tissueName][sampleID]["mean"])
allCTs.append(theseSamples[geneName][tissueName][sampleID]["mean"])
minCT[geneName]=min(vector)
for geneName in theseSamples.keys(): #goes though genes
for tissueName in theseSamples[geneName].keys(): #goes through tissues
for sampleID in theseSamples[geneName][tissueName].keys(): # goes through individuals
#different ways to calculate the Ct mean reference
if whichRef==0: # mean of all Ct means
reference=mean(allCTs)
elif whichRef==1: # minimum of all C tmeans
reference=min(allCTs)
deltaCT=reference-theseSamples[geneName][tissueName][sampleID]["mean"] # calculate delta Ct
Q=math.pow(eff[geneName],deltaCT) # calcualte relative quantities, accounting for efficiency
SDQ=Q*math.log(eff[geneName])*theseSamples[geneName][tissueName][sampleID]["stdv"] # propagate stdv
# we need to seperate data if it is a gene of interest or a control gene
if geneName in theseControlGenes: # control genes
if (controlQ.has_key(tissueName))==False: controlQ[tissueName]={}
if (controlQ[tissueName].has_key(sampleID))==False: controlQ[tissueName][sampleID]={}
controlQ[tissueName][sampleID][geneName]={} #this assumes that in a given plate you should have only 1 gene/smapleId/tissue otherwise these are technical replicates and it has been already averaged
controlQ[tissueName][sampleID][geneName]["mean"]=Q
controlQ[tissueName][sampleID][geneName]["stdv"]=SDQ
else: # gene of interest
if (sampleQ.has_key(tissueName))==False: sampleQ[tissueName]={}
if (sampleQ[tissueName].has_key(sampleID))==False: sampleQ[tissueName][sampleID]={}
sampleQ[tissueName][sampleID][geneName]={} #this assumes that in a given plate you should have only 1 gene/smapleId/tissue otherwise these are technical replicates and it has been already averaged
sampleQ[tissueName][sampleID][geneName]["mean"]=Q
sampleQ[tissueName][sampleID][geneName]["stdv"]=SDQ
return sampleQ,controlQ
def isFloat(f): #check if this is the string can be changed in float
newf="".join(f.split("."))
return newf.isdigit()
def checkSamples(samples,listOfGOI,listOfControls,interrunsFlag,interruns,interrunsGenes,interrunsControls,fullNames): #this is cleaning up the data when normalizer are missing, we need to eliminate the sample set associated with it
newSample={}
interrunData={}
allTissues=sets.Set([])
allSpecies=sets.Set([])
for geneName in listOfGOI:
for tissueName in samples[geneName].keys():
for sampleID in samples[geneName][tissueName].keys():
if tissueName!=interruns[0] and sampleID!=interruns[1]:
allTissues.add(tissueName[1:])
allSpecies.add(fullNames[tissueName[0]])
cc=[]
for controlGene in listOfControls:
if samples.has_key(controlGene):
if samples[controlGene].has_key(tissueName):
if samples[controlGene][tissueName].has_key(sampleID): cc.append(controlGene)
if len(cc)<len(listOfControls):
line="Sample set ["+geneName+", "+tissueName+", "+sampleID+"] is missing control gene(s) "+",".join(filter(lambda x:x not in cc,listOfControls)+filter(lambda x:x not in listOfControls,cc))
logout.write(line)
#print line
else:
if (newSample.has_key(geneName))==False: newSample[geneName]={} # gene name
if (newSample[geneName].has_key(tissueName))==False: newSample[geneName][tissueName]={} # tissue name
if (newSample[geneName][tissueName].has_key(sampleID))==False: newSample[geneName][tissueName][sampleID]={} # individual name
newSample[geneName][tissueName][sampleID]["mean"]=samples[geneName][tissueName][sampleID]["mean"]
newSample[geneName][tissueName][sampleID]["stdv"]=samples[geneName][tissueName][sampleID]["stdv"]
for controlGene in listOfControls:
if (newSample.has_key(controlGene))==False: newSample[controlGene]={} # gene name
if (newSample[controlGene].has_key(tissueName))==False: newSample[controlGene][tissueName]={} # tissue name
if (newSample[controlGene][tissueName].has_key(sampleID))==False: newSample[controlGene][tissueName][sampleID]={} # individual name
newSample[controlGene][tissueName][sampleID]["mean"]=samples[controlGene][tissueName][sampleID]["mean"]
newSample[controlGene][tissueName][sampleID]["stdv"]=samples[controlGene][tissueName][sampleID]["stdv"]
print "\t# genes of interest: "+",".join(listOfGOI)
print "\t# control genes: "+",".join(listOfControls)
print "\t# inter-plates genes of interest: "+",".join(interrunsGenes)
print "\t# inter-plates control genes: "+",".join(interrunsControls)
print "\t# tissues: "+",".join(list(allTissues))
print "\t# species: "+",".join(list(allSpecies))
for geneName in interrunsGenes:
tissueName=interruns[0]
sampleID=interruns[1]
if (interrunData.has_key(geneName))==False: interrunData[geneName]={} # gene name
if (interrunData[geneName].has_key(tissueName))==False: interrunData[geneName][tissueName]={} # tissue name
if (interrunData[geneName][tissueName].has_key(sampleID))==False: interrunData[geneName][tissueName][sampleID]={} # individual name
interrunData[geneName][tissueName][sampleID]["mean"]=samples[geneName][tissueName][sampleID]["mean"]
interrunData[geneName][tissueName][sampleID]["stdv"]=samples[geneName][tissueName][sampleID]["stdv"]
for controlGene in listOfControls:
if (interrunData.has_key(controlGene))==False: interrunData[controlGene]={} # gene name
if (interrunData[controlGene].has_key(tissueName))==False: interrunData[controlGene][tissueName]={} # tissue name
if (interrunData[controlGene][tissueName].has_key(sampleID))==False: interrunData[controlGene][tissueName][sampleID]={} # individual name
interrunData[controlGene][tissueName][sampleID]["mean"]=samples[controlGene][tissueName][sampleID]["mean"]
interrunData[controlGene][tissueName][sampleID]["stdv"]=samples[controlGene][tissueName][sampleID]["stdv"]
exitFlag=checkInterPlates(interrunData,interruns,interrunsGenes,interrunsControls)
return newSample,interrunData,exitFlag
def checkInterPlates(samples,interruns,interrunsGenes,interrunsControl):
exitFlag=False
tissueName=interruns[0]
sampleID=interruns[1]
totalGenes=len(interrunsGenes)+len(interrunsControl)
cc=0
for geneName in (interrunsGenes+interrunsControl):
if samples[geneName].has_key(tissueName):
if samples[geneName][tissueName].has_key(sampleID):
cc=cc+1
if cc!=totalGenes: exitFlag=True
return exitFlag
def getData(fileName): #get data and return data and effciency
fileHandle=open(fileName,'r')
myData=fileHandle.read().splitlines()
fileHandle.close()
thisData=[]
for line in myData: thisData.append(line.strip(" "))
amplEff_vector={} #get primer efficiencies
index=thisData.index("gene individual name species/tissue name CT")
for datum in thisData[0:index]: # get efficiency and gene names
items=datum.split("\t")
geneName=items[0]
efficiency=(float(items[1])/100.0)+1.0 #assume that efficiency will be between 0 and 100
amplEff_vector[geneName]=efficiency
technicals_data={}
for datum in thisData[index+1:]:
if datum[0]!="#": #ignore lines starting with "#"
geneName,sampleID,tissueName,CTvalue=datum.split("\t")
if isFloat(CTvalue): #deprecated: if CTvalue!="Undet.":
if (technicals_data.has_key(tissueName))==False: technicals_data[tissueName]={} # tissues
if (technicals_data[tissueName].has_key(geneName))==False: technicals_data[tissueName][geneName]={} # genename
technicals_data[tissueName][geneName].setdefault(sampleID,[]).append(float(CTvalue)) # tehcnical replicates per individual
return technicals_data,amplEff_vector
def same(string1,string2):
if string1==string2 or string1.upper()==string2.upper():
return True
return False
def getParameters(parameterFile):
fileNames,controls,GOIs,thresh,threshFlag,interrunsF,interrunsI,interrunsG,exprRef,outputFileName,fullNames,replicates,interrunsC=[],[],[],-1,False,False,[],[],0,"qPCR.out",{},False,[]
fileHandle=open(parameterFile,'r')
inpData=fileHandle.read().splitlines()
fileHandle.close()
cc=sets.Set([])
for line in inpData:
if line[0]!="#":
subject,items=[x.strip(" ") for x in line.split("=")]
if same(subject,"PLATES"):
if items!="": fileNames=items.split(",")
cc.add(subject)
if same(subject,"CONTROLS"):
if items!="": controls=items.split(",")
cc.add(subject)
if same(subject,"GOIs"):
if items!="": GOIs=items.split(",")
cc.add(subject)
if same(subject,"STDV"):
if items!="-1":
thresh=float(items)
threshFlag=True
cc.add(subject)
if same(subject,"INTERRUNS (TISSUE,INDIVIDUAL)"):
if items!="": interrunsI=items.split(",")
cc.add(subject)
if same(subject,"INTERRUNS (GENES)"):
if items!="": interrunsG=items.split(",")
cc.add(subject)
if same(subject,"INTERRUNS (CONTROLS)"):
if items!="": interrunsC=items.split(",")
cc.add(subject)
if same(subject,"INTERRUNS"):
interrunsF=same(items,"Yes")
cc.add(subject)
if same(subject,"EXPRESSION REFERENCE"):
ExprRef=int(items)
cc.add(subject)
if same(subject,"OUTPUT FILE NAME"):
outputFileName=items
cc.add(subject)
if same(subject,"FULL SPECIES NAMES"):
if items!="": entries=items.split(",")
for entry in entries:
abreviation,fullName=entry.split(":")
fullNames[abreviation]=fullName
cc.add(subject)
if same(subject,"REPLICATES"):
replicates=same(items,"Yes")
cc.add(subject)
if len(list(cc))<12:
print "Parameter file incomplete or contaning errors"
sys.exit()
return fileNames,controls,GOIs,thresh,threshFlag,interrunsF,interrunsI,interrunsG,ExprRef,outputFileName,fullNames,replicates,interrunsC
def ss(inlist): # sum of squares
ss = 0
for item in inlist:
ss = ss + item*item
return ss
def variance (inlist): # variance
n = len(inlist)
mn = mean(inlist)
deviations = [0]*len(inlist)
for i in range(len(inlist)):
deviations[i] = inlist[i] - mn
return ss(deviations)/float(n-1)
def stdev (inlist): # standard deviation
if len(inlist)>1:
return math.sqrt(variance(inlist))
else:
return 0
def mean(thisList): #calculate the mean
return float(sum(thisList))/float(len(thisList))
def meanCt(thistechnicals,thresh,flag): #calculate mean CT
samples_vector={}
for tissueName in thistechnicals.keys(): # loop through tissuee names
for geneName in thistechnicals[tissueName].keys(): # loop through gene name
for sampleID in thistechnicals[tissueName][geneName].keys(): # loop through individal names
meanCT=mean(thistechnicals[tissueName][geneName][sampleID]) # get the mean of 1 individual for all technical replicates
stdvCT=stdev(thistechnicals[tissueName][geneName][sampleID])# get the stdv of 1 individual for all technical replicates
if stdvCT>thresh and flag==True:
line="Sample ["+tissueName+", "+geneName+", "+sampleID+"] eliminated because stdv > "+str(stdvCT)
logout.write(line)
#print line
elif flag==False or stdvCT<=thresh: #to modifiy if we want to incllude everything
# now we store mean and stdv per gene/tissue/individual
if (samples_vector.has_key(geneName))==False: samples_vector[geneName]={} # gene name
if (samples_vector[geneName].has_key(tissueName))==False: samples_vector[geneName][tissueName]={} # tissue name
if (samples_vector[geneName][tissueName].has_key(sampleID))==False: samples_vector[geneName][tissueName][sampleID]={} # individual name
samples_vector[geneName][tissueName][sampleID]["mean"]=meanCT
samples_vector[geneName][tissueName][sampleID]["stdv"]=stdvCT
return samples_vector
def getNF(Qvalues): #calculate normalizing factors from
NFresults={}
for sampleID in Qvalues.keys():
vector=[] #create a vector of meanCt per individual/gene
for geneName in Qvalues[sampleID].keys(): vector.append(Qvalues[sampleID][geneName]["mean"])
thisNF=geometric(vector)
SDNF=thisNF*math.pow(sum([math.pow(Qvalues[sampleID][geneName]["stdv"]/float(len(Qvalues[sampleID].keys())*Qvalues[sampleID][geneName]["mean"]),2) for geneName in Qvalues[sampleID].keys()]),0.5)
NFresults[sampleID]={}
NFresults[sampleID]["NF"]=thisNF
NFresults[sampleID]["SDNF"]=SDNF
return NFresults
def getAllNFs(controlQ):
NFs={} # calculate normalizing factors per tissue/species
for tissueName in controlQ.keys(): NFs[tissueName]=getNF(controlQ[tissueName])
return NFs
def normalize(sampleQ,NFs): #normalize quantities
#normalize quantities
GOIs={}
for tissueName in sampleQ.keys(): #goes through all tissues
for sampleID in sampleQ[tissueName].keys(): # goes though all individuals
for geneName in sampleQ[tissueName][sampleID].keys(): # goes through all genes
normalized=sampleQ[tissueName][sampleID][geneName]["mean"]/NFs[tissueName][sampleID]["NF"]
stdvNormalized=normalized*math.pow(math.pow(NFs[tissueName][sampleID]["SDNF"]/NFs[tissueName][sampleID]["NF"],2)+math.pow(sampleQ[tissueName][sampleID][geneName]["stdv"]/sampleQ[tissueName][sampleID][geneName]["mean"],2),0.5)
if (GOIs.has_key(geneName))==False: GOIs[geneName]={} #we create a Gene Of Interest hash with gene/tissue/individual and store normalized mean and normalized stdv
if (GOIs[geneName].has_key(tissueName))==False: GOIs[geneName][tissueName]={}
GOIs[geneName][tissueName][sampleID]={}
GOIs[geneName][tissueName][sampleID]["mean"]=normalized
GOIs[geneName][tissueName][sampleID]["stdv"]=stdvNormalized
return GOIs
def formatPrint(inData,title,legend):
line="\n\n"+title+"\n"+legend
for keyOne in inData.keys():
for keyTwo in inData[keyOne].keys():
for keyThree in inData[keyOne][keyTwo].keys():
line=line+"\n"+keyOne+"\t"+keyTwo+"\t"+keyThree+"\t"+str(inData[keyOne][keyTwo][keyThree]["mean"])+"\t"+str(inData[keyOne][keyTwo][keyThree]["stdv"])
return line
def interPlates(GOIs,interrunsFlag,interruns,interrunsGenes,interrunsControls,amplEff,exprRef,interrunData):
# use inter plates normalizers
interrun={}
if interrunsFlag==True:
print "\tInter-plates calibration is performed"
interrunSampleQ,interrunControlQ=deltaCt(interrunData,amplEff,interrunsControls,exprRef)
if len(interrunsControls)>0:
print "\t Used Hellemans et al., 2007 method to normalize (geometric mean of normalized relative quantities)"
interrunNFs=getAllNFs(interrunControlQ) # calculate normalizing factors per tissue/species
interrunGOIs=normalize(interrunSampleQ,interrunNFs) #normalize quantities
allInterruns=[]
for thisGenecontrol in interrunsGenes: allInterruns.append(interrunData[thisGenecontrol][interruns[0]][interruns[1]]["mean"])
CF=geometric(allInterruns)
else:
print "\t Normalize with the geometric mean of relative quantities"
allInterruns=[]
for thisGenecontrol in interrunsGenes: allInterruns.append(interrunSampleQ[interruns[0]][interruns[1]][thisGenecontrol]["mean"])
CF=geometric(allInterruns)
for geneName in GOIs.keys():
interrun[geneName]={}
for tissueName in GOIs[geneName].keys():
interrun[geneName][tissueName]={}
for sampleID in GOIs[geneName][tissueName].keys():
scaled=GOIs[geneName][tissueName][sampleID]["mean"]/CF
interrun[geneName][tissueName][sampleID]={}
interrun[geneName][tissueName][sampleID]["mean"]=scaled
interrun[geneName][tissueName][sampleID]["stdv"]=GOIs[geneName][tissueName][sampleID]["stdv"]/CF
finalVector.append(scaled)
else:
print "\nNo itner-plates calibration performed"
for geneName in GOIs.keys():
interrun[geneName]={}
for tissueName in GOIs[geneName].keys():
interrun[geneName][tissueName]={}
for sampleID in GOIs[geneName][tissueName].keys():
interrun[geneName][tissueName][sampleID]={}
interrun[geneName][tissueName][sampleID]["mean"]=GOIs[geneName][tissueName][sampleID]["mean"]
interrun[geneName][tissueName][sampleID]["stdv"]=GOIs[geneName][tissueName][sampleID]["stdv"]
finalVector.append(GOIs[geneName][tissueName][sampleID]["mean"])
return interrun,finalVector
fileNames_updated,interrun,finalVector=[],{},[]
parameterFile="aParameters.in"
plateNames,listOfControls,listOfGOI,thresh,threshFlag,interrunsFlag,interruns,interrunsGenes,exprRef,outputFileName,fullNames,replicates,interrunsControls=getParameters(parameterFile)
outputhandle=open(outputFileName,'w')
print""
for fileName in plateNames:
print "\n"+fileName
outputhandle.write("\n\n*** "+fileName+" ***")
technicals,amplEff=getData(fileName) #get technical replicates[sampleName][[geneName][sampleId] and amplEfficiency for each gene
samples=meanCt(technicals,thresh,threshFlag) # calculate meanCt across technical replicates and returns samples[geneName][sampleName][sampleId] mean and stdv
outputhandle.write(formatPrint(samples,"Mean CT","Gene\tTissue\tIndividuals\tMean\tStdv"))
#make new listOfControls, listOfGOI
tempGOIs,tempControls=[],[]
for geneName in samples.keys():
if geneName in listOfGOI:
tempGOIs.append(geneName)
elif geneName in listOfControls:
tempControls.append(geneName)
listOfGOI=tempGOIs
listOfControls=tempControls
samples,interrunData,exitFlag=checkSamples(samples,listOfGOI,listOfControls,interrunsFlag,interruns,interrunsGenes,interrunsControls,fullNames) # check if the data is complete
if exitFlag==True and interrunsFlag==True:
line="Experiment "+fileName+" can't be analyzed with interplates normalizers"
logout.write(line)
print line
else:
outputhandle.write("\n"+fileName+" passed")
fileNames_updated.append(fileName)
sampleQ,controlQ=deltaCt(samples,amplEff,listOfControls,exprRef) #get quantities
NFs=getAllNFs(controlQ) # calculate normalizing factors per tissue/species
GOIs=normalize(sampleQ,NFs) #normalize quantities
outputhandle.write(formatPrint(GOIs,"Normalized","Gene\tTissue\tIndividuals\tMean\tStdv"))
interrun[fileName],finalVector=interPlates(GOIs,interrunsFlag,interruns,interrunsGenes,interrunsControls,amplEff,exprRef,interrunData) # uses inter plates normalizers
outputhandle.write(formatPrint(interrun[fileName],"Interrun normalized","Gene\tTissue\tIndividuals\tMean\tStdv")) #output final results
# COMBINE ALL THE NORMALIZED DATA
if len(finalVector)==0:
line="\nError: all the plates have been ignored because of missing inter-plates normalizer values\n"
logout.write(line)
print line
sys.exit()
else:
minExpress=min(finalVector) #normalized by the smallest scaled expression => lowest expressed==1
globalTable={}
for fileName in fileNames_updated: # consider only filenames that passed
outputhandle.write("\n\n\t"+fileName+"\n")
for geneName in interrun[fileName].keys():
for tissueName in interrun[fileName][geneName].keys():
for sampleID in interrun[fileName][geneName][tissueName].keys():
if sampleID!=interruns[1]:
speciesName=tissueName[0]
experimentName=geneName+"_"+tissueName
if (globalTable.has_key(experimentName))==False: globalTable[experimentName]={}
if (globalTable[experimentName].has_key(speciesName))==False: globalTable[experimentName][speciesName]={}
if (globalTable[experimentName][speciesName].has_key(sampleID))==False: globalTable[experimentName][speciesName][sampleID]={}
globalTable[experimentName][speciesName][sampleID][fileName]={}
globalTable[experimentName][speciesName][sampleID][fileName]["mean"]=interrun[fileName][geneName][tissueName][sampleID]["mean"]/minExpress
globalTable[experimentName][speciesName][sampleID][fileName]["stdv"]=interrun[fileName][geneName][tissueName][sampleID]["stdv"]/minExpress
outputhandle.write("\t\t"+fullNames[speciesName]+"\t"+geneName+"_"+tissueName[1:]+"\t"+sampleID+"\t"+str(interrun[fileName][geneName][tissueName][sampleID]["mean"]/minExpress)+"\t"+str(interrun[fileName][geneName][tissueName][sampleID]["stdv"]/minExpress)+"\n")
newR={}
if replicates==True: # if there are more replicates, average them
print "\nAverage all replicates across plates"
for experimentName in globalTable.keys():
listTemp=sets.Set([])
for speciesName in globalTable[experimentName].keys():
for sampleID in globalTable[experimentName][speciesName].keys():
for fileName in globalTable[experimentName][speciesName][sampleID].keys():
listTemp.add(fileName)
listOfPlates=list(listTemp)
for speciesName in globalTable[experimentName].keys():
for sampleID in globalTable[experimentName][speciesName].keys():
line="\n"+sampleID
val=[]
val2=[]
for fileName in listOfPlates:
if globalTable[experimentName][speciesName][sampleID].has_key(fileName):
line=line+"\t"+str(globalTable[experimentName][speciesName][sampleID][fileName])
val.append(globalTable[experimentName][speciesName][sampleID][fileName]["mean"])
val2.append(globalTable[experimentName][speciesName][sampleID][fileName]["stdv"])
geneName,tissueName=experimentName.split("_")
if newR.has_key(geneName)==False: newR[geneName]={}
if newR[geneName].has_key(tissueName[1:])==False: newR[geneName][tissueName[1:]]={}
if newR[geneName][tissueName[1:]].has_key(speciesName)==False: newR[geneName][tissueName[1:]][speciesName]={}
newR[geneName][tissueName[1:]][speciesName][sampleID]=[str(mean(val))]
"""
newVal=[]
for i in range(len(val2)):
if val2[i]/val[i]<=0.3:
newVal.append(val[i])
if len(newVal)>0:
newR[geneName][tissueName[1:]][speciesName][sampleID]=[str(mean(newVal))]
else:
newR[geneName][tissueName[1:]][speciesName][sampleID]=["None"]
"""
else:
print "\nOutput all replicates across plates"
for experimentName in globalTable.keys():
listTemp=sets.Set([])
for speciesName in globalTable[experimentName].keys():
for sampleID in globalTable[experimentName][speciesName].keys():
for fileName in globalTable[experimentName][speciesName][sampleID].keys():
listTemp.add(fileName)
listOfPlates=list(listTemp)
for speciesName in globalTable[experimentName].keys():
for sampleID in globalTable[experimentName][speciesName].keys():
line="\n"+sampleID
geneName,tissueName=experimentName.split("_")
if newR.has_key(geneName)==False: newR[geneName]={}
if newR[geneName].has_key(tissueName[1:])==False: newR[geneName][tissueName[1:]]={}
if newR[geneName][tissueName[1:]].has_key(speciesName)==False: newR[geneName][tissueName[1:]][speciesName]={}
for fileName in listOfPlates:
if globalTable[experimentName][speciesName][sampleID].has_key(fileName):
line=line+"\t"+str(globalTable[experimentName][speciesName][sampleID][fileName])
newR[geneName][tissueName[1:]][speciesName].setdefault(sampleID,[]).append(str(globalTable[experimentName][speciesName][sampleID][fileName]["mean"])+"("+str(globalTable[experimentName][speciesName][sampleID][fileName]["stdv"])+", "+str(globalTable[experimentName][speciesName][sampleID][fileName]["stdv"]/globalTable[experimentName][speciesName][sampleID][fileName]["mean"])+")")
outputhandle.write("\n\nSpecies,Gene,Tissue,Individual,Expression")
for geneName in newR.keys():
outputhandle.write("\n\n*** "+geneName+" ***")
for tissueName in newR[geneName].keys():
outputhandle.write("\n\n"+tissueName)
for speciesName in newR[geneName][tissueName].keys():
for sampleID in newR[geneName][tissueName][speciesName].keys():
outputhandle.write("\n"+"\t".join([fullNames[speciesName],geneName,tissueName,sampleID,"\t".join([str(x) for x in newR[geneName][tissueName][speciesName][sampleID]])]))
outputhandle.close()
print "\nsee results in "+outputFileName
print "and possible errors in "+LOG_FILENAME+"\n"
logout.close()