Skip to content

A multiprocessing distributed task queue for Django based on Django-Q

License

Notifications You must be signed in to change notification settings

olevchyk/django-q2

 
 

Repository files navigation

A multiprocessing distributed task queue for Django

image0 image1 Documentation Status downloads

Django Q2 is a fork of Django Q. Big thanks to Ilan Steemers for starting this project. Unfortunately, development has stalled since June 2021. Django Q2 is the new updated version of Django Q, with dependencies updates, docs updates and several bug fixes. Original repository: https://github.com/Koed00/django-q

Features

  • Multiprocessing worker pool
  • Asynchronous tasks
  • Scheduled, cron and repeated tasks
  • Signed and compressed packages
  • Failure and success database or cache
  • Result hooks, groups and chains
  • Django Admin integration
  • PaaS compatible with multiple instances
  • Multi cluster monitor
  • Redis, IronMQ, SQS, MongoDB or ORM
  • Rollbar and Sentry support

Changes compared to the original Django-Q:

  • Dropped support for Disque (hasn't been updated in a long time)
  • Dropped Redis, Arrow and Blessed dependencies
  • Updated all current dependencies
  • Added tests for Django 4.x
  • Added Turkish language
  • Improved admin area
  • Fixed a lot of issues

See the changelog for all changes.

Requirements

Tested with: Python 3.8, 3.9, 3.10, 3.11 Django 3.2.X and 4.1.X

Brokers

Installation

  • Install the latest version with pip:

    $ pip install django-q2
    
  • Add django_q to your INSTALLED_APPS in your projects settings.py:

    INSTALLED_APPS = (
        # other apps
        'django_q',
    )
    
  • Run Django migrations to create the database tables:

    $ python manage.py migrate
    
  • Choose a message broker, configure and install the appropriate client library.

Read the full documentation at https://django-q2.readthedocs.org

Configuration

All configuration settings are optional. e.g:

# settings.py example
Q_CLUSTER = {
    'name': 'myproject',
    'workers': 8,
    'recycle': 500,
    'timeout': 60,
    'compress': True,
    'cpu_affinity': 1,
    'save_limit': 250,
    'queue_limit': 500,
    'label': 'Django Q',
    'redis': {
        'host': '127.0.0.1',
        'port': 6379,
        'db': 0,
    }
}

For full configuration options, see the configuration documentation.

Management Commands

For the management commands to work, you will need to install Blessed: <https://github.com/jquast/blessed>

Start a cluster with:

$ python manage.py qcluster

Monitor your clusters with:

$ python manage.py qmonitor

Monitor your clusters' memory usage with:

$ python manage.py qmemory

Check overall statistics with:

$ python manage.py qinfo

Creating Tasks

Use async_task from your code to quickly offload tasks:

from django_q.tasks import async_task, result

# create the task
async_task('math.copysign', 2, -2)

# or with a reference
import math.copysign

task_id = async_task(copysign, 2, -2)

# get the result
task_result = result(task_id)

# result returns None if the task has not been executed yet
# you can wait for it
task_result = result(task_id, 200)

# but in most cases you will want to use a hook:

async_task('math.modf', 2.5, hook='hooks.print_result')

# hooks.py
def print_result(task):
    print(task.result)

For more info see Tasks

Schedule

Schedules are regular Django models. You can manage them through the Admin page or directly from your code:

# Use the schedule function
from django_q.tasks import schedule

schedule('math.copysign',
         2, -2,
         hook='hooks.print_result',
         schedule_type=Schedule.DAILY)

# Or create the object directly
from django_q.models import Schedule

Schedule.objects.create(func='math.copysign',
                        hook='hooks.print_result',
                        args='2,-2',
                        schedule_type=Schedule.DAILY
                        )

# Run a task every 5 minutes, starting at 6 today
# for 2 hours
from datetime import datetime

schedule('math.hypot',
         3, 4,
         schedule_type=Schedule.MINUTES,
         minutes=5,
         repeats=24,
         next_run=datetime.utcnow().replace(hour=18, minute=0))

# Use a cron expression
schedule('math.hypot',
         3, 4,
         schedule_type=Schedule.CRON,
         cron = '0 22 * * 1-5')

For more info check the Schedules documentation.

Testing

Running tests is easy with docker compose, it will also start the necessary databases. Just run:

docker-compose -f test-services-docker-compose.yaml run --rm django-q2 poetry run pytest

Locale

Currently available in English, German, Turkish, and French. Translation pull requests are always welcome.

Todo

  • Better tests and coverage
  • Less dependencies?

Acknowledgements

About

A multiprocessing distributed task queue for Django based on Django-Q

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.9%
  • Dockerfile 0.1%