This is a set of software to demonstrate how to use MediaPipe's Hands model within PeekingDuck.
The components are:
-
src/custom_nodes/dabble/hand_capture.py
: PeekingDuck custom node to show live hand and to capture landmark coordinates into SQL database. -
src/custom_nodes/dabble/hand_view.py
: PeekingDuck custom node to show rendered hand using data within SQL database. -
src/custom_nodes/model/hand_inference.py
: PeekingDuck custom node to perform inference on hand(s) and recognise hand gestures. -
src/hand.py
: encapsulates all hand related functions and methods. -
src/train_hand_gestures_classifier.py
: script to train a fully connected network for hand gestures classification under Tensorflow.
Run the custom nodes with peekingduck run --config_path <pipeline yaml>
E.g. peekingduck run --config_path inference_hands.yml
will run hand inference
using PeekingDuck's custom_nodes.dabble.hand_inference
node.
capture_hands.yml
inference_hands.yml
view_hands.yml
New note to test Jira integration.