Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update rag eval readme for crud ragas. #154

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions evals/evaluation/rag_eval/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,9 @@ To setup a LLM model, we can use [tgi-gaudi](https://github.com/huggingface/tgi-
# please set your llm_port and hf_token

docker run -p {your_llm_port}:80 --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HF_TOKEN={your_hf_token} --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.1 --model-id mistralai/Mixtral-8x7B-Instruct-v0.1 --max-input-tokens 2048 --max-total-tokens 4096 --sharded true --num-shard 2

# for better performance, set `PREFILL_BATCH_BUCKET_SIZE`, `BATCH_BUCKET_SIZE`, `max-batch-total-tokens`, `max-batch-prefill-tokens`
docker run -p {your_llm_port}:80 --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HF_TOKEN={your_hf_token} -e PREFILL_BATCH_BUCKET_SIZE=1 -e BATCH_BUCKET_SIZE=8 --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.5 --model-id mistralai/Mixtral-8x7B-Instruct-v0.1 --max-input-tokens 2048 --max-total-tokens 4096 --sharded true --num-shard 2 --max-batch-total-tokens 65536 --max-batch-prefill-tokens 2048
```

### Prepare Dataset
Expand Down Expand Up @@ -138,6 +141,9 @@ If you are using docker compose to deploy RAG system, you can simply run the eva
```bash
cd examples
python eval_crud.py --dataset_path ../data/split_merged.json --docs_path ../data/80000_docs --ingest_docs

# if you want to get ragas metrics
python eval_crud.py --dataset_path ../data/split_merged.json --docs_path ../data/80000_docs --contain_original_data --llm_endpoint "http://{llm_as_judge_ip}:{llm_as_judge_port}" --ragas_metrics
```

If you are using Kubernetes manifest/helm to deploy RAG system, you must specify more arguments as following:
Expand Down
Loading