Skip to content

Commit

Permalink
Added docker compose example for MultimodalQnA deploy on AMD ROCm sys…
Browse files Browse the repository at this point in the history
…tems

Signed-off-by: artem-astafev <[email protected]>
  • Loading branch information
artem-astafev committed Dec 6, 2024
1 parent bde285d commit 95f9b07
Show file tree
Hide file tree
Showing 4 changed files with 839 additions and 0 deletions.
346 changes: 346 additions & 0 deletions MultimodalQnA/docker_compose/amd/gpu/rocm/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,346 @@
# Build Mega Service of MultimodalQnA for AMD ROCm

This document outlines the deployment process for a MultimodalQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on AMD server wit ROCm GPUs. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `multimodal_embedding` that employs [BridgeTower](https://huggingface.co/BridgeTower/bridgetower-large-itm-mlm-gaudi) model as embedding model, `multimodal_retriever`, `lvm`, and `multimodal-data-prep`. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service.

For detailed information about these instance types, you can refer to this [link](https://aws.amazon.com/ec2/instance-types/m7i/). Once you've chosen the appropriate instance type, proceed with configuring your instance settings, including network configurations, security groups, and storage options.

After launching your instance, you can connect to it using SSH (for Linux instances) or Remote Desktop Protocol (RDP) (for Windows instances). From there, you'll have full access to your Xeon server, allowing you to install, configure, and manage your applications as needed.


## Setup Environment Variables

Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.

**Export the value of the public IP address of your Xeon server to the `host_ip` environment variable**

> Change the External_Public_IP below with the actual IPV4 value
```
export host_ip="External_Public_IP"
```

**Append the value of the public IP address to the no_proxy list**

```bash
export your_no_proxy=${your_no_proxy},"External_Public_IP"
```

```bash
export no_proxy=${your_no_proxy}
export http_proxy=${your_http_proxy}
export https_proxy=${your_http_proxy}
export EMBEDDER_PORT=6006
export MMEI_EMBEDDING_ENDPOINT="http://${host_ip}:$EMBEDDER_PORT/v1/encode"
export MM_EMBEDDING_PORT_MICROSERVICE=6000
export REDIS_URL="redis://${host_ip}:6379"
export REDIS_HOST=${host_ip}
export INDEX_NAME="mm-rag-redis"
export LLAVA_SERVER_PORT=8399
export LVM_ENDPOINT="http://${host_ip}:8399"
export EMBEDDING_MODEL_ID="BridgeTower/bridgetower-large-itm-mlm-itc"
export LVM_MODEL_ID="llava-hf/llava-1.5-7b-hf"
export WHISPER_MODEL="base"
export MM_EMBEDDING_SERVICE_HOST_IP=${host_ip}
export MM_RETRIEVER_SERVICE_HOST_IP=${host_ip}
export LVM_SERVICE_HOST_IP=${host_ip}
export MEGA_SERVICE_HOST_IP=${host_ip}
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/multimodalqna"
export DATAPREP_INGEST_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/ingest_with_text"
export DATAPREP_GEN_TRANSCRIPT_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/generate_transcripts"
export DATAPREP_GEN_CAPTION_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/generate_captions"
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/get_files"
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/delete_files"
```

Note: Please replace with `host_ip` with you external IP address, do not use localhost.

## 🚀 Build Docker Images

### 1. Build embedding-multimodal-bridgetower Image

Build embedding-multimodal-bridgetower docker image

```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build --no-cache -t opea/embedding-multimodal-bridgetower:latest --build-arg EMBEDDER_PORT=$EMBEDDER_PORT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/multimodal/bridgetower/Dockerfile .
```

Build embedding-multimodal microservice image

```bash
docker build --no-cache -t opea/embedding-multimodal:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/multimodal/multimodal_langchain/Dockerfile .
```

### 2. Build retriever-multimodal-redis Image

```bash
docker build --no-cache -t opea/retriever-multimodal-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/multimodal/redis/langchain/Dockerfile .
```

### 3. Build LVM Images

Build lvm-llava image

```bash
docker build --no-cache -t opea/lvm-llava:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/llava/dependency/Dockerfile .
```

### 4. Build dataprep-multimodal-redis Image

```bash
docker build --no-cache -t opea/dataprep-multimodal-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/multimodal/redis/langchain/Dockerfile .
```

### 5. Build MegaService Docker Image

To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the [multimodalqna.py](../../../../multimodalqna.py) Python script. Build MegaService Docker image via below command:

```bash
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/MultimodalQnA
docker build --no-cache -t opea/multimodalqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
cd ../..
```

### 6. Build UI Docker Image

Build frontend Docker image via below command:

```bash
cd GenAIExamples/MultimodalQnA/ui/
docker build --no-cache -t opea/multimodalqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
cd ../../../
```

### 7. Pull TGI AMD ROCm Image

```bash
docker pull ghcr.io/huggingface/text-generation-inference:2.4.1-rocm
```

Then run the command `docker images`, you will have the following 8 Docker Images:

1. `opea/dataprep-multimodal-redis:latest`
2. `ghcr.io/huggingface/text-generation-inference:2.4.1-rocm`
3. `opea/lvm-llava:latest`
4. `opea/retriever-multimodal-redis:latest`
5. `opea/embedding-multimodal:latest`
6. `opea/embedding-multimodal-bridgetower:latest`
7. `opea/multimodalqna:latest`
8. `opea/multimodalqna-ui:latest`

## 🚀 Start Microservices

### Required Models

By default, the multimodal-embedding and LVM models are set to a default value as listed below:

| Service | Model |
| -------------------- | ------------------------------------------- |
| embedding-multimodal | BridgeTower/bridgetower-large-itm-mlm-gaudi |
| LVM | llava-hf/llava-1.5-7b-hf |
| LVM | Xkev/Llama-3.2V-11B-cot |


Note:

For AMD ROCm System "Xkev/Llama-3.2V-11B-cot" is recomended to run on ghcr.io/huggingface/text-generation-inference:2.4.1-rocm

### Start all the services Docker Containers

> Before running the docker compose command, you need to be in the folder that has the docker compose yaml file
```bash
cd GenAIExamples/MultimodalQnA/docker_compose/amd/gpu/rocm
docker compose -f compose.yaml up -d
```

Note: Please replace with `host_ip` with your external IP address, do not use localhost.

Note: In order to limit access to a subset of GPUs, please pass each device individually using one or more -device /dev/dri/rendered<node>, where <node> is the card index, starting from 128. (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)

Example for set isolation for 1 GPU

```
- /dev/dri/card0:/dev/dri/card0
- /dev/dri/renderD128:/dev/dri/renderD128
```

Example for set isolation for 2 GPUs

```
- /dev/dri/card0:/dev/dri/card0
- /dev/dri/renderD128:/dev/dri/renderD128
- /dev/dri/card1:/dev/dri/card1
- /dev/dri/renderD129:/dev/dri/renderD129
```

Please find more information about accessing and restricting AMD GPUs in the link (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)

### Validate Microservices

1. embedding-multimodal-bridgetower

```bash
curl http://${host_ip}:${EMBEDDER_PORT}/v1/encode \
-X POST \
-H "Content-Type:application/json" \
-d '{"text":"This is example"}'
```

```bash
curl http://${host_ip}:${EMBEDDER_PORT}/v1/encode \
-X POST \
-H "Content-Type:application/json" \
-d '{"text":"This is example", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
```

2. embedding-multimodal

```bash
curl http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings \
-X POST \
-H "Content-Type: application/json" \
-d '{"text" : "This is some sample text."}'
```

```bash
curl http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings \
-X POST \
-H "Content-Type: application/json" \
-d '{"text": {"text" : "This is some sample text."}, "image" : {"url": "https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true"}}'
```

3. retriever-multimodal-redis

```bash
export your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(512)]; print(embedding)")
curl http://${host_ip}:7000/v1/multimodal_retrieval \
-X POST \
-H "Content-Type: application/json" \
-d "{\"text\":\"test\",\"embedding\":${your_embedding}}"
```

4. lvm-llava

```bash
curl http://${host_ip}:${LLAVA_SERVER_PORT}/generate \
-X POST \
-H "Content-Type:application/json" \
-d '{"prompt":"Describe the image please.", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
```

5. lvm-llava-svc

```bash
curl http://${host_ip}:9399/v1/lvm \
-X POST \
-H 'Content-Type: application/json' \
-d '{"retrieved_docs": [], "initial_query": "What is this?", "top_n": 1, "metadata": [{"b64_img_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "transcript_for_inference": "yellow image", "video_id": "8c7461df-b373-4a00-8696-9a2234359fe0", "time_of_frame_ms":"37000000", "source_video":"WeAreGoingOnBullrun_8c7461df-b373-4a00-8696-9a2234359fe0.mp4"}], "chat_template":"The caption of the image is: '\''{context}'\''. {question}"}'
```

```bash
curl http://${host_ip}:9399/v1/lvm \
-X POST \
-H 'Content-Type: application/json' \
-d '{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}'
```

Also, validate LVM Microservice with empty retrieval results

```bash
curl http://${host_ip}:9399/v1/lvm \
-X POST \
-H 'Content-Type: application/json' \
-d '{"retrieved_docs": [], "initial_query": "What is this?", "top_n": 1, "metadata": [], "chat_template":"The caption of the image is: '\''{context}'\''. {question}"}'
```

6. dataprep-multimodal-redis

Download a sample video, image, and audio file and create a caption

```bash
export video_fn="WeAreGoingOnBullrun.mp4"
wget http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/WeAreGoingOnBullrun.mp4 -O ${video_fn}

export image_fn="apple.png"
wget https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true -O ${image_fn}

export caption_fn="apple.txt"
echo "This is an apple." > ${caption_fn}

export audio_fn="AudioSample.wav"
wget https://github.com/intel/intel-extension-for-transformers/raw/main/intel_extension_for_transformers/neural_chat/assets/audio/sample.wav -O ${audio_fn}
```

Test dataprep microservice with generating transcript. This command updates a knowledge base by uploading a local video .mp4 and an audio .wav file.

```bash
curl --silent --write-out "HTTPSTATUS:%{http_code}" \
${DATAPREP_GEN_TRANSCRIPT_SERVICE_ENDPOINT} \
-H 'Content-Type: multipart/form-data' \
-X POST \
-F "files=@./${video_fn}" \
-F "files=@./${audio_fn}"
```

Also, test dataprep microservice with generating an image caption using lvm microservice

```bash
curl --silent --write-out "HTTPSTATUS:%{http_code}" \
${DATAPREP_GEN_CAPTION_SERVICE_ENDPOINT} \
-H 'Content-Type: multipart/form-data' \
-X POST -F "files=@./${image_fn}"
```

Now, test the microservice with posting a custom caption along with an image

```bash
curl --silent --write-out "HTTPSTATUS:%{http_code}" \
${DATAPREP_INGEST_SERVICE_ENDPOINT} \
-H 'Content-Type: multipart/form-data' \
-X POST -F "files=@./${image_fn}" -F "files=@./${caption_fn}"
```

Also, you are able to get the list of all files that you uploaded:

```bash
curl -X POST \
-H "Content-Type: application/json" \
${DATAPREP_GET_FILE_ENDPOINT}
```

Then you will get the response python-style LIST like this. Notice the name of each uploaded file e.g., `videoname.mp4` will become `videoname_uuid.mp4` where `uuid` is a unique ID for each uploaded file. The same files that are uploaded twice will have different `uuid`.

```bash
[
"WeAreGoingOnBullrun_7ac553a1-116c-40a2-9fc5-deccbb89b507.mp4",
"WeAreGoingOnBullrun_6d13cf26-8ba2-4026-a3a9-ab2e5eb73a29.mp4",
"apple_fcade6e6-11a5-44a2-833a-3e534cbe4419.png",
"AudioSample_976a85a6-dc3e-43ab-966c-9d81beef780c.wav
]
```
To delete all uploaded files along with data indexed with `$INDEX_NAME` in REDIS.
```bash
curl -X POST \
-H "Content-Type: application/json" \
${DATAPREP_DELETE_FILE_ENDPOINT}
```
7. MegaService
```bash
curl http://${host_ip}:8888/v1/multimodalqna \
-H "Content-Type: application/json" \
-X POST \
-d '{"messages": "What is the revenue of Nike in 2023?"}'
```
```bash
curl http://${host_ip}:8888/v1/multimodalqna \
-H "Content-Type: application/json" \
-d '{"messages": [{"role": "user", "content": [{"type": "text", "text": "hello, "}, {"type": "image_url", "image_url": {"url": "https://www.ilankelman.org/stopsigns/australia.jpg"}}]}, {"role": "assistant", "content": "opea project! "}, {"role": "user", "content": "chao, "}], "max_tokens": 10}'
```
Loading

0 comments on commit 95f9b07

Please sign in to comment.