-
Notifications
You must be signed in to change notification settings - Fork 197
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added docker compose example for MultimodalQnA deploy on AMD ROCm sys…
…tems Signed-off-by: artem-astafev <[email protected]>
- Loading branch information
1 parent
bde285d
commit 95f9b07
Showing
4 changed files
with
839 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,346 @@ | ||
# Build Mega Service of MultimodalQnA for AMD ROCm | ||
|
||
This document outlines the deployment process for a MultimodalQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on AMD server wit ROCm GPUs. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `multimodal_embedding` that employs [BridgeTower](https://huggingface.co/BridgeTower/bridgetower-large-itm-mlm-gaudi) model as embedding model, `multimodal_retriever`, `lvm`, and `multimodal-data-prep`. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service. | ||
|
||
For detailed information about these instance types, you can refer to this [link](https://aws.amazon.com/ec2/instance-types/m7i/). Once you've chosen the appropriate instance type, proceed with configuring your instance settings, including network configurations, security groups, and storage options. | ||
|
||
After launching your instance, you can connect to it using SSH (for Linux instances) or Remote Desktop Protocol (RDP) (for Windows instances). From there, you'll have full access to your Xeon server, allowing you to install, configure, and manage your applications as needed. | ||
|
||
|
||
## Setup Environment Variables | ||
|
||
Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below. | ||
|
||
**Export the value of the public IP address of your Xeon server to the `host_ip` environment variable** | ||
|
||
> Change the External_Public_IP below with the actual IPV4 value | ||
``` | ||
export host_ip="External_Public_IP" | ||
``` | ||
|
||
**Append the value of the public IP address to the no_proxy list** | ||
|
||
```bash | ||
export your_no_proxy=${your_no_proxy},"External_Public_IP" | ||
``` | ||
|
||
```bash | ||
export no_proxy=${your_no_proxy} | ||
export http_proxy=${your_http_proxy} | ||
export https_proxy=${your_http_proxy} | ||
export EMBEDDER_PORT=6006 | ||
export MMEI_EMBEDDING_ENDPOINT="http://${host_ip}:$EMBEDDER_PORT/v1/encode" | ||
export MM_EMBEDDING_PORT_MICROSERVICE=6000 | ||
export REDIS_URL="redis://${host_ip}:6379" | ||
export REDIS_HOST=${host_ip} | ||
export INDEX_NAME="mm-rag-redis" | ||
export LLAVA_SERVER_PORT=8399 | ||
export LVM_ENDPOINT="http://${host_ip}:8399" | ||
export EMBEDDING_MODEL_ID="BridgeTower/bridgetower-large-itm-mlm-itc" | ||
export LVM_MODEL_ID="llava-hf/llava-1.5-7b-hf" | ||
export WHISPER_MODEL="base" | ||
export MM_EMBEDDING_SERVICE_HOST_IP=${host_ip} | ||
export MM_RETRIEVER_SERVICE_HOST_IP=${host_ip} | ||
export LVM_SERVICE_HOST_IP=${host_ip} | ||
export MEGA_SERVICE_HOST_IP=${host_ip} | ||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/multimodalqna" | ||
export DATAPREP_INGEST_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/ingest_with_text" | ||
export DATAPREP_GEN_TRANSCRIPT_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/generate_transcripts" | ||
export DATAPREP_GEN_CAPTION_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/generate_captions" | ||
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/get_files" | ||
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/delete_files" | ||
``` | ||
|
||
Note: Please replace with `host_ip` with you external IP address, do not use localhost. | ||
|
||
## 🚀 Build Docker Images | ||
|
||
### 1. Build embedding-multimodal-bridgetower Image | ||
|
||
Build embedding-multimodal-bridgetower docker image | ||
|
||
```bash | ||
git clone https://github.com/opea-project/GenAIComps.git | ||
cd GenAIComps | ||
docker build --no-cache -t opea/embedding-multimodal-bridgetower:latest --build-arg EMBEDDER_PORT=$EMBEDDER_PORT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/multimodal/bridgetower/Dockerfile . | ||
``` | ||
|
||
Build embedding-multimodal microservice image | ||
|
||
```bash | ||
docker build --no-cache -t opea/embedding-multimodal:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/multimodal/multimodal_langchain/Dockerfile . | ||
``` | ||
|
||
### 2. Build retriever-multimodal-redis Image | ||
|
||
```bash | ||
docker build --no-cache -t opea/retriever-multimodal-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/multimodal/redis/langchain/Dockerfile . | ||
``` | ||
|
||
### 3. Build LVM Images | ||
|
||
Build lvm-llava image | ||
|
||
```bash | ||
docker build --no-cache -t opea/lvm-llava:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/llava/dependency/Dockerfile . | ||
``` | ||
|
||
### 4. Build dataprep-multimodal-redis Image | ||
|
||
```bash | ||
docker build --no-cache -t opea/dataprep-multimodal-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/multimodal/redis/langchain/Dockerfile . | ||
``` | ||
|
||
### 5. Build MegaService Docker Image | ||
|
||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the [multimodalqna.py](../../../../multimodalqna.py) Python script. Build MegaService Docker image via below command: | ||
|
||
```bash | ||
git clone https://github.com/opea-project/GenAIExamples.git | ||
cd GenAIExamples/MultimodalQnA | ||
docker build --no-cache -t opea/multimodalqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile . | ||
cd ../.. | ||
``` | ||
|
||
### 6. Build UI Docker Image | ||
|
||
Build frontend Docker image via below command: | ||
|
||
```bash | ||
cd GenAIExamples/MultimodalQnA/ui/ | ||
docker build --no-cache -t opea/multimodalqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile . | ||
cd ../../../ | ||
``` | ||
|
||
### 7. Pull TGI AMD ROCm Image | ||
|
||
```bash | ||
docker pull ghcr.io/huggingface/text-generation-inference:2.4.1-rocm | ||
``` | ||
|
||
Then run the command `docker images`, you will have the following 8 Docker Images: | ||
|
||
1. `opea/dataprep-multimodal-redis:latest` | ||
2. `ghcr.io/huggingface/text-generation-inference:2.4.1-rocm` | ||
3. `opea/lvm-llava:latest` | ||
4. `opea/retriever-multimodal-redis:latest` | ||
5. `opea/embedding-multimodal:latest` | ||
6. `opea/embedding-multimodal-bridgetower:latest` | ||
7. `opea/multimodalqna:latest` | ||
8. `opea/multimodalqna-ui:latest` | ||
|
||
## 🚀 Start Microservices | ||
|
||
### Required Models | ||
|
||
By default, the multimodal-embedding and LVM models are set to a default value as listed below: | ||
|
||
| Service | Model | | ||
| -------------------- | ------------------------------------------- | | ||
| embedding-multimodal | BridgeTower/bridgetower-large-itm-mlm-gaudi | | ||
| LVM | llava-hf/llava-1.5-7b-hf | | ||
| LVM | Xkev/Llama-3.2V-11B-cot | | ||
|
||
|
||
Note: | ||
|
||
For AMD ROCm System "Xkev/Llama-3.2V-11B-cot" is recomended to run on ghcr.io/huggingface/text-generation-inference:2.4.1-rocm | ||
|
||
### Start all the services Docker Containers | ||
|
||
> Before running the docker compose command, you need to be in the folder that has the docker compose yaml file | ||
```bash | ||
cd GenAIExamples/MultimodalQnA/docker_compose/amd/gpu/rocm | ||
docker compose -f compose.yaml up -d | ||
``` | ||
|
||
Note: Please replace with `host_ip` with your external IP address, do not use localhost. | ||
|
||
Note: In order to limit access to a subset of GPUs, please pass each device individually using one or more -device /dev/dri/rendered<node>, where <node> is the card index, starting from 128. (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus) | ||
|
||
Example for set isolation for 1 GPU | ||
|
||
``` | ||
- /dev/dri/card0:/dev/dri/card0 | ||
- /dev/dri/renderD128:/dev/dri/renderD128 | ||
``` | ||
|
||
Example for set isolation for 2 GPUs | ||
|
||
``` | ||
- /dev/dri/card0:/dev/dri/card0 | ||
- /dev/dri/renderD128:/dev/dri/renderD128 | ||
- /dev/dri/card1:/dev/dri/card1 | ||
- /dev/dri/renderD129:/dev/dri/renderD129 | ||
``` | ||
|
||
Please find more information about accessing and restricting AMD GPUs in the link (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus) | ||
|
||
### Validate Microservices | ||
|
||
1. embedding-multimodal-bridgetower | ||
|
||
```bash | ||
curl http://${host_ip}:${EMBEDDER_PORT}/v1/encode \ | ||
-X POST \ | ||
-H "Content-Type:application/json" \ | ||
-d '{"text":"This is example"}' | ||
``` | ||
|
||
```bash | ||
curl http://${host_ip}:${EMBEDDER_PORT}/v1/encode \ | ||
-X POST \ | ||
-H "Content-Type:application/json" \ | ||
-d '{"text":"This is example", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}' | ||
``` | ||
|
||
2. embedding-multimodal | ||
|
||
```bash | ||
curl http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings \ | ||
-X POST \ | ||
-H "Content-Type: application/json" \ | ||
-d '{"text" : "This is some sample text."}' | ||
``` | ||
|
||
```bash | ||
curl http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings \ | ||
-X POST \ | ||
-H "Content-Type: application/json" \ | ||
-d '{"text": {"text" : "This is some sample text."}, "image" : {"url": "https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true"}}' | ||
``` | ||
|
||
3. retriever-multimodal-redis | ||
|
||
```bash | ||
export your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(512)]; print(embedding)") | ||
curl http://${host_ip}:7000/v1/multimodal_retrieval \ | ||
-X POST \ | ||
-H "Content-Type: application/json" \ | ||
-d "{\"text\":\"test\",\"embedding\":${your_embedding}}" | ||
``` | ||
|
||
4. lvm-llava | ||
|
||
```bash | ||
curl http://${host_ip}:${LLAVA_SERVER_PORT}/generate \ | ||
-X POST \ | ||
-H "Content-Type:application/json" \ | ||
-d '{"prompt":"Describe the image please.", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}' | ||
``` | ||
|
||
5. lvm-llava-svc | ||
|
||
```bash | ||
curl http://${host_ip}:9399/v1/lvm \ | ||
-X POST \ | ||
-H 'Content-Type: application/json' \ | ||
-d '{"retrieved_docs": [], "initial_query": "What is this?", "top_n": 1, "metadata": [{"b64_img_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "transcript_for_inference": "yellow image", "video_id": "8c7461df-b373-4a00-8696-9a2234359fe0", "time_of_frame_ms":"37000000", "source_video":"WeAreGoingOnBullrun_8c7461df-b373-4a00-8696-9a2234359fe0.mp4"}], "chat_template":"The caption of the image is: '\''{context}'\''. {question}"}' | ||
``` | ||
|
||
```bash | ||
curl http://${host_ip}:9399/v1/lvm \ | ||
-X POST \ | ||
-H 'Content-Type: application/json' \ | ||
-d '{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}' | ||
``` | ||
|
||
Also, validate LVM Microservice with empty retrieval results | ||
|
||
```bash | ||
curl http://${host_ip}:9399/v1/lvm \ | ||
-X POST \ | ||
-H 'Content-Type: application/json' \ | ||
-d '{"retrieved_docs": [], "initial_query": "What is this?", "top_n": 1, "metadata": [], "chat_template":"The caption of the image is: '\''{context}'\''. {question}"}' | ||
``` | ||
|
||
6. dataprep-multimodal-redis | ||
|
||
Download a sample video, image, and audio file and create a caption | ||
|
||
```bash | ||
export video_fn="WeAreGoingOnBullrun.mp4" | ||
wget http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/WeAreGoingOnBullrun.mp4 -O ${video_fn} | ||
|
||
export image_fn="apple.png" | ||
wget https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true -O ${image_fn} | ||
|
||
export caption_fn="apple.txt" | ||
echo "This is an apple." > ${caption_fn} | ||
|
||
export audio_fn="AudioSample.wav" | ||
wget https://github.com/intel/intel-extension-for-transformers/raw/main/intel_extension_for_transformers/neural_chat/assets/audio/sample.wav -O ${audio_fn} | ||
``` | ||
|
||
Test dataprep microservice with generating transcript. This command updates a knowledge base by uploading a local video .mp4 and an audio .wav file. | ||
|
||
```bash | ||
curl --silent --write-out "HTTPSTATUS:%{http_code}" \ | ||
${DATAPREP_GEN_TRANSCRIPT_SERVICE_ENDPOINT} \ | ||
-H 'Content-Type: multipart/form-data' \ | ||
-X POST \ | ||
-F "files=@./${video_fn}" \ | ||
-F "files=@./${audio_fn}" | ||
``` | ||
|
||
Also, test dataprep microservice with generating an image caption using lvm microservice | ||
|
||
```bash | ||
curl --silent --write-out "HTTPSTATUS:%{http_code}" \ | ||
${DATAPREP_GEN_CAPTION_SERVICE_ENDPOINT} \ | ||
-H 'Content-Type: multipart/form-data' \ | ||
-X POST -F "files=@./${image_fn}" | ||
``` | ||
|
||
Now, test the microservice with posting a custom caption along with an image | ||
|
||
```bash | ||
curl --silent --write-out "HTTPSTATUS:%{http_code}" \ | ||
${DATAPREP_INGEST_SERVICE_ENDPOINT} \ | ||
-H 'Content-Type: multipart/form-data' \ | ||
-X POST -F "files=@./${image_fn}" -F "files=@./${caption_fn}" | ||
``` | ||
|
||
Also, you are able to get the list of all files that you uploaded: | ||
|
||
```bash | ||
curl -X POST \ | ||
-H "Content-Type: application/json" \ | ||
${DATAPREP_GET_FILE_ENDPOINT} | ||
``` | ||
|
||
Then you will get the response python-style LIST like this. Notice the name of each uploaded file e.g., `videoname.mp4` will become `videoname_uuid.mp4` where `uuid` is a unique ID for each uploaded file. The same files that are uploaded twice will have different `uuid`. | ||
|
||
```bash | ||
[ | ||
"WeAreGoingOnBullrun_7ac553a1-116c-40a2-9fc5-deccbb89b507.mp4", | ||
"WeAreGoingOnBullrun_6d13cf26-8ba2-4026-a3a9-ab2e5eb73a29.mp4", | ||
"apple_fcade6e6-11a5-44a2-833a-3e534cbe4419.png", | ||
"AudioSample_976a85a6-dc3e-43ab-966c-9d81beef780c.wav | ||
] | ||
``` | ||
To delete all uploaded files along with data indexed with `$INDEX_NAME` in REDIS. | ||
```bash | ||
curl -X POST \ | ||
-H "Content-Type: application/json" \ | ||
${DATAPREP_DELETE_FILE_ENDPOINT} | ||
``` | ||
7. MegaService | ||
```bash | ||
curl http://${host_ip}:8888/v1/multimodalqna \ | ||
-H "Content-Type: application/json" \ | ||
-X POST \ | ||
-d '{"messages": "What is the revenue of Nike in 2023?"}' | ||
``` | ||
```bash | ||
curl http://${host_ip}:8888/v1/multimodalqna \ | ||
-H "Content-Type: application/json" \ | ||
-d '{"messages": [{"role": "user", "content": [{"type": "text", "text": "hello, "}, {"type": "image_url", "image_url": {"url": "https://www.ilankelman.org/stopsigns/australia.jpg"}}]}, {"role": "assistant", "content": "opea project! "}, {"role": "user", "content": "chao, "}], "max_tokens": 10}' | ||
``` |
Oops, something went wrong.