Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(evaluator): calculate average of metric result across all dataset #1947

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 26 additions & 3 deletions mmocr/evaluation/evaluator/multi_datasets_evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,9 +92,32 @@ def evaluate(self, size: int) -> dict:
metrics_results.update(metric_results)
metric.results.clear()
if is_main_process():
metrics_results = [metrics_results]
averaged_results = [self.average_results(metrics_results)]
else:
metrics_results = [None] # type: ignore
averaged_results = [None]

metrics_results = [metrics_results]
broadcast_object_list(metrics_results)
broadcast_object_list([averaged_results])
results = {
'metric_results': metrics_results[0],
'averaged_results': averaged_results
}
return results

def average_results(self, metrics_results):
"""Compute the average of metric results across all datasets.

Args:
metrics_results (dict): Evaluation results of all metrics.

Returns:pre
dict: Average evaluation results of all metrics.
"""
averaged_results = {}
num_datasets = len(self.dataset_prefixes)
for metric_name, metric_result in metrics_results.items():
metric_avg = metric_result / num_datasets
averaged_results[metric_name] = metric_avg

return metrics_results[0]
return averaged_results
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# Copyright (c) OpenMMLab. All rights reserved.

import math
from collections import OrderedDict
from typing import Dict, List, Optional
from unittest import TestCase

Expand Down Expand Up @@ -75,7 +76,7 @@ def generate_test_results(size, batch_size, pred, label):
predictions = [
BaseDataElement(pred=pred, label=label) for _ in range(bs)
]
yield (data_batch, predictions)
yield data_batch, predictions


class TestMultiDatasetsEvaluator(TestCase):
Expand All @@ -96,11 +97,11 @@ def test_composed_metrics(self):
size, batch_size, pred=1, label=1):
evaluator.process(predictions, data_samples)

metrics = evaluator.evaluate(size=size)
metrics_results, averaged_results = evaluator.evaluate(size=size)

self.assertAlmostEqual(metrics['Fake/Toy/accuracy'], 1.0)
self.assertAlmostEqual(metrics['Fake/Toy/mAP'], 0.0)
self.assertEqual(metrics['Fake/Toy/size'], size)
self.assertAlmostEqual(metrics_results['Fake/Toy/accuracy'], 1.0)
self.assertAlmostEqual(metrics_results['Fake/Toy/mAP'], 0.0)
self.assertEqual(metrics_results['Fake/Toy/size'], size)
with self.assertWarns(Warning):
evaluator.evaluate(size=0)

Expand All @@ -123,6 +124,25 @@ def test_composed_metrics(self):
for data_samples, predictions in generate_test_results(
size, batch_size, pred=1, label=1):
evaluator.process(predictions, data_samples)
metrics = evaluator.evaluate(size=size)
self.assertIn('Fake/Toy/accuracy', metrics)
self.assertIn('Fake/accuracy', metrics)
metrics_results, averaged_results = evaluator.evaluate(size=size)
self.assertIn('Fake/Toy/accuracy', metrics_results)
self.assertIn('Fake/accuracy', metrics_results)

metrics_results = OrderedDict({
'dataset1/metric1/accuracy': 0.9,
'dataset1/metric2/f1_score': 0.8,
'dataset2/metric1/accuracy': 0.85,
'dataset2/metric2/f1_score': 0.75
})

evaluator = MultiDatasetsEvaluator(cfg, dataset_prefixes=['Fake'])
averaged_results = evaluator.average_results(metrics_results)

expected_averaged_results = {
'dataset1/metric1/accuracy': 0.9,
'dataset1/metric2/f1_score': 0.8,
'dataset2/metric1/accuracy': 0.85,
'dataset2/metric2/f1_score': 0.75
}

self.assertEqual(averaged_results, expected_averaged_results)