Skip to content

Commit

Permalink
Release MMSegmentation v1.1.0
Browse files Browse the repository at this point in the history
  • Loading branch information
xiexinch committed Jul 4, 2023
2 parents e64548f + e4c1865 commit 0079076
Show file tree
Hide file tree
Showing 330 changed files with 13,149 additions and 440 deletions.
25 changes: 13 additions & 12 deletions .circleci/test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -61,10 +61,11 @@ jobs:
command: |
pip install git+https://github.com/open-mmlab/mmengine.git@main
pip install -U openmim
mim install 'mmcv>=2.0.0rc4'
pip install mmcls==1.0.0rc6
pip install git+https://github.com/open-mmlab/mmdetection.git@main
mim install mmcv>=2.0.0
pip install mmpretrain>=1.0.0rc7
pip install mmdet>=3.0.0
pip install -r requirements/tests.txt -r requirements/optional.txt
python -m pip install albumentations>=0.3.2 --no-binary qudida,albumentations
- run:
name: Build and install
command: |
Expand Down Expand Up @@ -96,21 +97,21 @@ jobs:
name: Clone Repos
command: |
git clone -b main --depth 1 https://github.com/open-mmlab/mmengine.git /home/circleci/mmengine
git clone -b dev-3.x --depth 1 https://github.com/open-mmlab/mmdetection.git /home/circleci/mmdetection
- run:
name: Build Docker image
command: |
docker build .circleci/docker -t mmseg:gpu --build-arg PYTORCH=<< parameters.torch >> --build-arg CUDA=<< parameters.cuda >> --build-arg CUDNN=<< parameters.cudnn >>
docker run --gpus all -t -d -v /home/circleci/project:/mmseg -v /home/circleci/mmengine:/mmengine -v /home/circleci/mmclassification:/mmclassification -v /home/circleci/mmdetection:/mmdetection -w /mmseg --name mmseg mmseg:gpu
docker run --gpus all -t -d -v /home/circleci/project:/mmseg -v /home/circleci/mmengine:/mmengine -v /home/circleci/mmpretrain:/mmpretrain -v /home/circleci/mmdetection:/mmdetection -w /mmseg --name mmseg mmseg:gpu
- run:
name: Install mmseg dependencies
command: |
docker exec mmseg pip install -e /mmengine
docker exec mmseg pip install -U openmim
docker exec mmseg mim install 'mmcv>=2.0.0rc4'
docker exec mmseg pip install mmcls==1.0.0rc6
docker exec mmseg pip install -e /mmdetection
docker exec mmseg mim install mmcv>=2.0.0
docker exec mmseg pip install mmpretrain>=1.0.0rc7
docker exec mmseg mim install mmdet>=3.0.0
docker exec mmseg pip install -r requirements/tests.txt -r requirements/optional.txt
docker exec mmseg python -m pip install albumentations>=0.3.2 --no-binary qudida,albumentations
- run:
name: Build and install
command: |
Expand Down Expand Up @@ -144,8 +145,8 @@ workflows:
- main
- build_cpu:
name: minimum_version_cpu
torch: 1.6.0
torchvision: 0.7.0
torch: 1.8.1
torchvision: 0.9.1
python: "3.7"
requires:
- lint
Expand Down Expand Up @@ -176,10 +177,10 @@ workflows:
jobs:
- build_cuda:
name: minimum_version_gpu
torch: 1.6.0
torch: 1.8.1
# Use double quotation mark to explicitly specify its type
# as string instead of number
cuda: "10.1"
cuda: "10.2"
filters:
branches:
only:
Expand Down
File renamed without changes.
File renamed without changes.
File renamed without changes.
56 changes: 56 additions & 0 deletions .dev_scripts/benchmark_full_models.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
ann/ann_r50-d8_4xb2-40k_cityscapes-512x1024.py
apcnet/apcnet_r50-d8_4xb4-80k_ade20k-512x512.py
beit/beit-large_upernet_8xb1-amp-160k_ade20k-640x640.py
bisenetv1/bisenetv1_r18-d32_4xb4-160k_coco-stuff164k-512x512.py
bisenetv2/bisenetv2_fcn_4xb4-ohem-160k_cityscapes-1024x1024.py
ccnet/ccnet_r50-d8_4xb2-40k_cityscapes-512x1024.py
cgnet/cgnet_fcn_4xb4-60k_cityscapes-680x680.py
convnext/convnext-tiny_upernet_8xb2-amp-160k_ade20k-512x512.py
danet/danet_r50-d8_4xb2-40k_cityscapes-512x1024.py
deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py
deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769.py
dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py
dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-512x1024.py
dpt/dpt_vit-b16_8xb2-160k_ade20k-512x512.py
emanet/eemanet_r50-d8_4xb2-80k_cityscapes-512x1024.py
encnet/encnet_r50-d8_4xb4-80k_ade20k-512x512.py
erfnet/erfnet_fcn_4xb4-160k_cityscapes-512x1024.py
fastfcn/fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py
fastscnn/fast_scnn_8xb4-160k_cityscapes-512x1024.py
fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py
gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-769x769.py
hrnet/fcn_hr18s_4xb4-80k_ade20k-512x512.py
icnet/icnet_r50-d8_4xb2-80k_cityscapes-832x832.py
isanet/isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py
knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640.py
mae/mae-base_upernet_8xb2-amp-160k_ade20k-512x512.py
mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024.py
mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024.py
mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512.py
mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py
maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512.py
maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512.py
maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512.py
maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512.py
mobilenet_v2/mobilenet-v2-d8_pspnet_4xb2-80k_cityscapes-512x1024.py
mobilenet_v3/mobilenet-v3-d8-scratch_lraspp_4xb4-320k_cityscapes-512x1024.py
nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024.py
ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py
pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes.py
point_rend/pointrend_r50_4xb2-80k_cityscapes-512x1024.py
poolformer/fpn_poolformer_m48_8xb4-40k_ade20k-512x512.py
psanet/psanet_r101-d8_4xb4-80k_ade20k-512x512.py
pspnet/pspnet_r50-d8-rsb_4xb2-adamw-80k_cityscapes-512x1024.py
resnest/resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512.py
segformer/segformer_mit-b5_8xb1-160k_cityscapes-1024x1024.py
segformer/segformer_mit-b5_8xb2-160k_ade20k-512x512.py
segmenter/segmenter_vit-t_mask_8xb1-160k_ade20k-512x512.py
segnext/segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py
sem_fpn/fpn_r101_4xb2-80k_cityscapes-512x1024.py
setr/setr_vit-l-mla_8xb1-160k_ade20k-512x512.py
stdc/stdc1_in1k-pre_4xb12-80k_cityscapes-512x1024.py
swin/swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py
twins/twins_pcpvt-s_uperhead_8xb4-160k_ade20k-512x512.py
unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py
upernet/upernet_r50_4xb2-40k_cityscapes-769x769.py
vit/vit_deit-s16_upernet_8xb2-80k_ade20k-512x512.py
File renamed without changes.
10 changes: 10 additions & 0 deletions .dev_scripts/benchmark_options.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
third_part_libs = [
'pip install mmengine',
'pip install mmcv>=2.0.0',
'pip install mmcls==1.0.0rc6',
'pip install mmdet==3.0.0',
'pip install -r requirements.txt',
'pip install timm',
]

default_floating_range = 0.5
File renamed without changes.
25 changes: 25 additions & 0 deletions .dev_scripts/benchmark_train_models.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
bisenetv1/bisenetv1_r18-d32_4xb4-160k_coco-stuff164k-512x512.py
bisenetv2/bisenetv2_fcn_4xb4-ohem-160k_cityscapes-1024x1024.py
deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py
deeplabv3/deeplabv3_r101-d8_4xb4-160k_ade20k-512x512.py
deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769.py
deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_ade20k-512x512.py
hrnet/fcn_hr18s_4xb4-80k_ade20k-512x512.py
hrnet/fcn_hr18_4xb2-160k_cityscapes-512x1024.py
knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512.py
knet/knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512.py
mae/mae-base_upernet_8xb2-amp-160k_ade20k-512x512.py
mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py
maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512.py
mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py
ocrnet/ocrnet_hr48_4xb4-80k_ade20k-512x512.py
pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py
pspnet/pspnet_r50-d8-rsb_4xb2-adamw-80k_cityscapes-512x1024.py
pspnet/pspnet_r101-d8_4xb4-80k_ade20k-512x512.py
segformer/segformer_mit-b5_8xb2-160k_ade20k-512x512.py
segmenter/segmenter_vit-t_mask_8xb1-160k_ade20k-512x512.py
segnext/segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py
swin/swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py
twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py
unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py
upernet/upernet_r101_4xb2-40k_cityscapes-512x1024.py
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ def parse_args():
parser.add_argument(
'--out',
type=str,
default='.dev/benchmark_evaluation.sh',
default='.dev_scripts/benchmark_evaluation.sh',
help='path to save model benchmark script')

args = parser.parse_args()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ def parse_args():
parser.add_argument(
'--out',
type=str,
default='.dev/benchmark_train.sh',
default='.dev_scripts/benchmark_train.sh',
help='path to save model benchmark script')

args = parser.parse_args()
Expand Down
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
5 changes: 0 additions & 5 deletions .owners.yml
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,3 @@ assign:
daily-shift-based
assignees:
- xiexinch
- csatsurnh
- xiexinch
- csatsurnh
- xiexinch
- csatsurnh
2 changes: 1 addition & 1 deletion .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ repos:
- id: update-model-index
name: update-model-index
description: Collect model information and update model-index.yml
entry: .dev/update_model_index.py
entry: .dev_scripts/update_model_index.py
additional_dependencies: [pyyaml]
language: python
require_serial: true
Expand Down
1 change: 1 addition & 0 deletions MANIFEST.in
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
include requirements/*.txt
include mmseg/.mim/model-index.yml
include mmaction/.mim/dataset-index.yml
recursive-include mmseg/.mim/configs *.py *.yaml
recursive-include mmseg/.mim/tools *.py *.sh
64 changes: 60 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -88,12 +88,12 @@ MMSegmentation v1.x brings remarkable improvements over the 0.x release, offerin

## What's New

v1.0.0 was released on 04/06/2023.
v1.1.0 was released on 07/04/2023.
Please refer to [changelog.md](docs/en/notes/changelog.md) for details and release history.

- Add Mapillary Vistas Datasets support to MMSegmentation Core Package ([#2576](https://github.com/open-mmlab/mmsegmentation/pull/2576))
- Support PIDNet ([#2609](https://github.com/open-mmlab/mmsegmentation/pull/2609))
- Support SegNeXt ([#2654](https://github.com/open-mmlab/mmsegmentation/pull/2654))
- Support 24 medical image datasets in [projects](./projects/medical/).
- Add GDAL backend and support remote sensing datasets [LEVIR-CD](https://github.com/open-mmlab/mmsegmentation/pull/2903).
- Support [DDRNet](https://github.com/open-mmlab/mmsegmentation/pull/2855).

## Installation

Expand All @@ -110,6 +110,60 @@ A Colab tutorial is also provided. You may preview the notebook [here](demo/MMSe

To migrate from MMSegmentation 0.x, please refer to [migration](docs/en/migration).

## Tutorial

<details>
<summary>Get Started</summary>

- [MMSeg overview](docs/en/overview.md)
- [MMSeg Installation](docs/en/get_started.md)
- [FAQ](docs/en/notes/faq.md)

</details>

<details>
<summary>MMSeg Basic Tutorial</summary>

- [Tutorial 1: Learn about Configs](docs/en/user_guides/1_config.md)
- [Tutorial 2: Prepare datasets](docs/en/user_guides/2_dataset_prepare.md)
- [Tutorial 3: Inference with existing models](docs/en/user_guides/3_inference.md)
- [Tutorial 4: Train and test with existing models](docs/en/user_guides/4_train_test.md)
- [Tutorial 5: Model deployment](docs/en/user_guides/5_deployment.md)
- [Useful Tools](docs/en/user_guides/useful_tools.md)
- [Feature Map Visualization](docs/en/user_guides/visualization_feature_map.md)
- [Visualization](docs/en/user_guides/visualization.md)

</details>

<details>
<summary>MMSeg Detail Tutorial</summary>

- [MMSeg Dataset](docs/en/advanced_guides/datasets.md)
- [MMSeg Models](docs/en/advanced_guides/models.md)
- [MMSeg Dataset Structures](docs/en/advanced_guides/structures.md)
- [MMSeg Data Transforms](docs/en/advanced_guides/transforms.md)
- [MMSeg Dataflow](docs/en/advanced_guides/data_flow.md)
- [MMSeg Training Engine](docs/en/advanced_guides/engine.md)
- [MMSeg Evaluation](docs/en/advanced_guides/evaluation.md)

</details>

<details>
<summary>MMSeg Development Tutorial</summary>

- [Add New Datasets](docs/en/advanced_guides/add_datasets.md)
- [Add New Metrics](docs/en/advanced_guides/add_metrics.md)
- [Add New Modules](docs/en/advanced_guides/add_models.md)
- [Add New Data Transforms](docs/en/advanced_guides/add_transforms.md)
- [Customize Runtime Settings](docs/en/advanced_guides/customize_runtime.md)
- [Training Tricks](docs/en/advanced_guides/training_tricks.md)
- [Contribute code to MMSeg](.github/CONTRIBUTING.md)
- [Contribute a standard dataset in projects](docs/zh_cn/advanced_guides/contribute_dataset.md)
- [NPU (HUAWEI Ascend)](docs/en/device/npu.md)
- [0.x → 1.x migration](docs/en/migration/interface.md)[0.x → 1.x package](docs/en/migration/package.md)

</details>

## Benchmark and model zoo

Results and models are available in the [model zoo](docs/en/model_zoo.md).
Expand Down Expand Up @@ -174,6 +228,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
- [x] [MaskFormer (NeurIPS'2021)](configs/maskformer)
- [x] [Mask2Former (CVPR'2022)](configs/mask2former)
- [x] [PIDNet (ArXiv'2022)](configs/pidnet)
- [x] [DDRNet (T-ITS'2022)](configs/ddrnet)

</details>

Expand All @@ -197,6 +252,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isaid)
- [x] [Mapillary Vistas](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#mapillary-vistas-datasets)
- [x] [LEVIR-CD](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#levir-cd)

</details>

Expand Down
58 changes: 57 additions & 1 deletion README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ MMSegmentation v1.x 在 0.x 版本的基础上有了显著的提升,提供了

## 更新日志

最新版本 v1.0.0 在 2023.04.06 发布。
最新版本 v1.1.0 在 2023.07.04 发布。
如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/en/notes/changelog.md)

## 安装
Expand All @@ -104,6 +104,60 @@ MMSegmentation v1.x 在 0.x 版本的基础上有了显著的提升,提供了

若需要将 0.x 版本的代码迁移至新版,请参考[迁移文档](docs/zh_cn/migration)

## 教程文档

<details>
<summary>开启 MMSeg 之旅</summary>

- [MMSeg 概述](docs/zh_cn/overview.md)
- [安装和验证](docs/zh_cn/get_started.md)
- [常见问题解答](docs/zh_cn/notes/faq.md)

</details>

<details>
<summary>MMSeg 快速入门教程</summary>

- [教程1:了解配置文件](docs/zh_cn/user_guides/1_config.md)
- [教程2:准备数据集](docs/zh_cn/user_guides/2_dataset_prepare.md)
- [教程3:使用预训练模型推理](docs/zh_cn/user_guides/3_inference.md)
- [教程4:使用现有模型进行训练和测试](docs/zh_cn/user_guides/4_train_test.md)
- [教程5:模型部署](docs/zh_cn/user_guides/5_deployment.md)
- [常用工具](docs/zh_cn/user_guides/useful_tools.md)
- [特征图可视化](docs/zh_cn/user_guides/visualization_feature_map.md)
- [可视化](docs/zh_cn/user_guides/visualization.md)

</details>

<details>
<summary>MMSeg 细节介绍</summary>

- [MMSeg 数据集介绍](docs/zh_cn/advanced_guides/datasets.md)
- [MMSeg 模型介绍](docs/zh_cn/advanced_guides/models.md)
- [MMSeg 数据结构介绍](docs/zh_cn/advanced_guides/structures.md)
- [MMSeg 数据增强介绍](docs/zh_cn/advanced_guides/transforms.md)
- [MMSeg 数据流介绍](docs/zh_cn/advanced_guides/data_flow.md)
- [MMSeg 训练引擎介绍](docs/zh_cn/advanced_guides/engine.md)
- [MMSeg 模型评测介绍](docs/zh_cn/advanced_guides/evaluation.md)

</details>

<details>
<summary>MMSeg 开发教程</summary>

- [新增自定义数据集](docs/zh_cn/advanced_guides/add_datasets.md)
- [新增评测指标](docs/zh_cn/advanced_guides/add_metrics.md)
- [新增自定义模型](docs/zh_cn/advanced_guides/add_models.md)
- [新增自定义数据增强](docs/zh_cn/advanced_guides/add_transforms.md)
- [自定义运行设定](docs/zh_cn/advanced_guides/customize_runtime.md)
- [训练技巧](docs/zh_cn/advanced_guides/training_tricks.md)
- [如何给 MMSeg贡献代码](.github/CONTRIBUTING.md)
- [在 projects 给 MMSeg 贡献一个标准数据集](docs/zh_cn/advanced_guides/contribute_dataset.md)
- [NPU (华为 昇腾)](docs/zh_cn/device/npu.md)
- [0.x → 1.x 迁移文档](docs/zh_cn/migration/interface.md)[0.x → 1.x 库变更文档](docs/zh_cn/migration/package.md)

</details>

## 基准测试和模型库

测试结果和模型可以在[模型库](docs/zh_cn/model_zoo.md)中找到。
Expand Down Expand Up @@ -168,6 +222,7 @@ MMSegmentation v1.x 在 0.x 版本的基础上有了显著的提升,提供了
- [x] [MaskFormer (NeurIPS'2021)](configs/maskformer)
- [x] [Mask2Former (CVPR'2022)](configs/mask2former)
- [x] [PIDNet (ArXiv'2022)](configs/pidnet)
- [x] [DDRNet (T-ITS'2022)](configs/ddrnet)

</details>

Expand All @@ -191,6 +246,7 @@ MMSegmentation v1.x 在 0.x 版本的基础上有了显著的提升,提供了
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#isaid)
- [x] [Mapillary Vistas](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#mapillary-vistas-datasets)
- [x] [LEVIR-CD](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#levir-cd)

</details>

Expand Down
Loading

0 comments on commit 0079076

Please sign in to comment.