-
Notifications
You must be signed in to change notification settings - Fork 2.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add DPT head * [fix] fix init error * use mmcv function * delete code * remove transpose clas * support NLC output shape * Delete post_process_layer.py * add unittest and docstring * rename variables * fix project error and add unittest * match dpt weights * add configs * fix vit pos_embed bug and dpt feature fusion bug * match vit output * fix gelu * minor change * update unitest * fix configs error * inference test * remove auxilary * use local pretrain * update training results * update yml * update fps and memory test * update doc * update readme * add yml * update doc * remove with_cp * update config * update docstring * remove dpt-l * add init_cfg and modify readme.md * Update dpt_vit-b16.py * zh-n README * use constructor instead of build function * prevent tensor being modified by ConvModule * fix unittest Co-authored-by: Junjun2016 <[email protected]>
- Loading branch information
1 parent
5753f41
commit 2825efe
Showing
8 changed files
with
482 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
norm_cfg = dict(type='SyncBN', requires_grad=True) | ||
model = dict( | ||
type='EncoderDecoder', | ||
pretrained='pretrain/vit-b16_p16_224-80ecf9dd.pth', # noqa | ||
backbone=dict( | ||
type='VisionTransformer', | ||
img_size=224, | ||
embed_dims=768, | ||
num_layers=12, | ||
num_heads=12, | ||
out_indices=(2, 5, 8, 11), | ||
final_norm=False, | ||
with_cls_token=True, | ||
output_cls_token=True), | ||
decode_head=dict( | ||
type='DPTHead', | ||
in_channels=(768, 768, 768, 768), | ||
channels=256, | ||
embed_dims=768, | ||
post_process_channels=[96, 192, 384, 768], | ||
num_classes=150, | ||
readout_type='project', | ||
input_transform='multiple_select', | ||
in_index=(0, 1, 2, 3), | ||
norm_cfg=norm_cfg, | ||
loss_decode=dict( | ||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | ||
auxiliary_head=None, | ||
# model training and testing settings | ||
train_cfg=dict(), | ||
test_cfg=dict(mode='whole')) # yapf: disable |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
# Vision Transformer for Dense Prediction | ||
|
||
## Introduction | ||
|
||
<!-- [ALGORITHM] --> | ||
|
||
```latex | ||
@article{dosoViTskiy2020, | ||
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale}, | ||
author={DosoViTskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil}, | ||
journal={arXiv preprint arXiv:2010.11929}, | ||
year={2020} | ||
} | ||
@article{Ranftl2021, | ||
author = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun}, | ||
title = {Vision Transformers for Dense Prediction}, | ||
journal = {ArXiv preprint}, | ||
year = {2021}, | ||
} | ||
``` | ||
|
||
## Usage | ||
|
||
To use other repositories' pre-trained models, it is necessary to convert keys. | ||
|
||
We provide a script [`vit2mmseg.py`](../../tools/model_converters/vit2mmseg.py) in the tools directory to convert the key of models from [timm](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py) to MMSegmentation style. | ||
|
||
```shell | ||
python tools/model_converters/vit2mmseg.py ${PRETRAIN_PATH} ${STORE_PATH} | ||
``` | ||
|
||
E.g. | ||
|
||
```shell | ||
python tools/model_converters/vit2mmseg.py https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth pretrain/jx_vit_base_p16_224-80ecf9dd.pth | ||
``` | ||
|
||
This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`. | ||
|
||
## Results and models | ||
|
||
### ADE20K | ||
|
||
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | | ||
| ------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ||
| DPT | ViT-B | 512x512 | 160000 | 8.09 | 10.41 | 46.97 | 48.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/dpt/dpt_vit-b16_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-db31cf52.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-20210809_172025.log.json) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
Collections: | ||
- Metadata: | ||
Training Data: | ||
- ADE20K | ||
Name: dpt | ||
Models: | ||
- Config: configs/dpt/dpt_vit-b16_512x512_160k_ade20k.py | ||
In Collection: dpt | ||
Metadata: | ||
backbone: ViT-B | ||
crop size: (512,512) | ||
inference time (ms/im): | ||
- backend: PyTorch | ||
batch size: 1 | ||
hardware: V100 | ||
mode: FP32 | ||
resolution: (512,512) | ||
value: 96.06 | ||
lr schd: 160000 | ||
memory (GB): 8.09 | ||
Name: dpt_vit-b16_512x512_160k_ade20k | ||
Results: | ||
Dataset: ADE20K | ||
Metrics: | ||
mIoU: 46.97 | ||
mIoU(ms+flip): 48.34 | ||
Task: Semantic Segmentation | ||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-db31cf52.pth |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
_base_ = [ | ||
'../_base_/models/dpt_vit-b16.py', '../_base_/datasets/ade20k.py', | ||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' | ||
] | ||
|
||
# AdamW optimizer, no weight decay for position embedding & layer norm | ||
# in backbone | ||
optimizer = dict( | ||
_delete_=True, | ||
type='AdamW', | ||
lr=0.00006, | ||
betas=(0.9, 0.999), | ||
weight_decay=0.01, | ||
paramwise_cfg=dict( | ||
custom_keys={ | ||
'pos_embed': dict(decay_mult=0.), | ||
'cls_token': dict(decay_mult=0.), | ||
'norm': dict(decay_mult=0.) | ||
})) | ||
|
||
lr_config = dict( | ||
_delete_=True, | ||
policy='poly', | ||
warmup='linear', | ||
warmup_iters=1500, | ||
warmup_ratio=1e-6, | ||
power=1.0, | ||
min_lr=0.0, | ||
by_epoch=False) | ||
|
||
# By default, models are trained on 8 GPUs with 2 images per GPU | ||
data = dict(samples_per_gpu=2, workers_per_gpu=2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.