-
Notifications
You must be signed in to change notification settings - Fork 318
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1398 from opencobra/develop
Regular merge of develop
- Loading branch information
Showing
40 changed files
with
1,917 additions
and
402 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,210 @@ | ||
function s=exp2fit(t,f,caseval,lsq_val,options) | ||
|
||
% exp2fit solves the non-linear least squares problem exact | ||
% and using it as a start guess in a least square method | ||
% in cases with noise, of the specific exponential functions: | ||
% --- caseval = 1 ---- | ||
% f=s1+s2*exp(-t/s3) | ||
% | ||
% --- caseval = 2 (general case, two exponentials) ---- | ||
% f=s1+s2*exp(-t/s3)+s4*exp(-t/s5) | ||
% | ||
% --- caseval = 3 ---- | ||
% f=s1*(1-exp(-t/s2)) %i.e., constraints between s1 and s2 | ||
% | ||
% Syntax: s=exp2fit(t,f,caseval) gives the parameters in the fitting | ||
% function specified by the choice of caseval (1,2,3). | ||
% t and f are (normally) vectors of the same size, containing | ||
% the data to be fitted. | ||
% s=exp2fit(t,f,caseval,lsq_val,options), using lsq_val='no' gives | ||
% the analytic solution, without least square approach (faster), where | ||
% options (optional or []) are produced by optimset, as used in lsqcurvefit. | ||
% | ||
% This algorithm is using analytic formulas using multiple integrals. | ||
% Integral estimations are used as start guess in lsqcurvefit. | ||
% Note: For infinite lengths of t, and f, without noise | ||
% the result is exact. | ||
% | ||
% %--- Example 1: | ||
% t=linspace(1,4,100)*1e-9; | ||
% noise=0.02; | ||
% f=0.1+2*exp(-t/3e-9)+noise*randn(size(t)); | ||
% | ||
% %--- solve without startguess | ||
% s=exp2fit(t,f,1) | ||
% | ||
% %--- plot and compare | ||
% fun = @(s,t) s(1)+s(2)*exp(-t/s(3)); | ||
% tt=linspace(0,4*s(3),200); | ||
% ff=fun(s,tt); | ||
% figure(1), clf;plot(t,f,'.',tt,ff); | ||
% | ||
% %--- Example 2, Damped Harmonic oscillator: | ||
% %--- Note: sin(x)=(exp(ix)-exp(-ix))/2i | ||
% t=linspace(1,12,100)*1e-9; | ||
% w=1e9; | ||
% f=1+3*exp(-t/5e-9).*sin(w*(t-2e-9)); | ||
% | ||
% %--- solve without startguess | ||
% s=exp2fit(t,f,2,'no') | ||
% | ||
% %--- plot and compare | ||
% fun = @(s,t) s(1)+s(2)*exp(-t/s(3))+s(4)*exp(-t/s(5)); | ||
% tt=linspace(0,20,200)*1e-9; | ||
% ff=fun(s,tt); | ||
% figure(1), clf;plot(t,f,'.',tt,real(ff)); | ||
% %--- evaluate parameters: | ||
% sprintf(['f=1+3*exp(-t/5e-9).*sin(w*(t-2e-9))\n',... | ||
% 'Frequency: w_fitted=',num2str(-imag(1/s(3)),3),' w_data=',num2str(w,3),'\n',... | ||
% 'Damping: tau=',num2str(1/real(1/s(3)),3),'\n',... | ||
% 'Offset: s1=',num2str(real(s(1)),3)]) | ||
% | ||
%%% By Per Sundqvist january 2009. | ||
|
||
[t,ix]=sort(t(:));%convert to column vector and sort | ||
f=f(:);f=f(ix); | ||
|
||
if nargin<4 | ||
lsq_val='yes';%default, use lsq-fitting | ||
end | ||
if nargin<5 | ||
options=optimset('TolX',1e-6,'TolFun',1e-8);%default | ||
end | ||
if nargin>=5 | ||
if isempty(options) | ||
options=optimset('TolX',1e-6,'TolFun',1e-8); | ||
end | ||
end | ||
if length(t)<3 | ||
error(['WARNING!', ... | ||
'To few data to give correct estimation of parameters!']); | ||
end | ||
|
||
%calculate help-variables | ||
T=max(t)-min(t);t2=max(t); | ||
tt=linspace(min(t),max(t),200); | ||
ff=pchip(t,f,tt); | ||
n=1;I1=trapz(tt,ff.*(t2-tt).^(n-1))/factorial(n-1); | ||
n=2;I2=trapz(tt,ff.*(t2-tt).^(n-1))/factorial(n-1); | ||
n=3;I3=trapz(tt,ff.*(t2-tt).^(n-1))/factorial(n-1); | ||
n=4;I4=trapz(tt,ff.*(t2-tt).^(n-1))/factorial(n-1); | ||
|
||
if caseval==1 | ||
%--- estimate tau, s1,s2 | ||
%--- Case: f=s1+s2*exp(-t/tau) | ||
tau=(12*I4-6*I3*T+I2*T^2)/(-12*I3+6*I2*T-I1*T^2); | ||
Q1=exp(-min(t)/tau); | ||
Q=exp(-T/tau); | ||
s1=2.*T.^(-1).*((1+Q).*T+2.*((-1)+Q).*tau).^(-1).*(I2.*((-1)+Q)+I1.* ... | ||
(T+((-1)+Q).*tau)); | ||
s2=(2.*I2+(-1).*I1.*T).*tau.^(-1).*((1+Q).*T+2.*((-1)+Q).*tau).^(-1); | ||
s2=s2/Q1; | ||
sf0=[s1 s2 tau]; | ||
fun = @(s,t) (s(1)*sf0(1))+(s(2)*sf0(2))*exp(-t/(s(3)*sf0(3))); | ||
s0=[1 1 1]; | ||
elseif caseval==3 | ||
%--- estimate tau, s1 | ||
%--- Case: f=s1*(1-exp(-t/tau)) | ||
tau=(12*I4-6*I3*T+I2*T^2)/(-12*I3+6*I2*T-I1*T^2); | ||
s1=6.*T.^(-3).*((-2).*I3+I2.*(T+(-2).*tau)+I1.*T.*tau); | ||
sf0=[s1 tau]; | ||
fun = @(s,t) (s(1)*sf0(1))*(1-exp(-t/(s(2)*sf0(2)))); | ||
s0=[1 1]; | ||
elseif caseval==2 | ||
% | ||
T=max(t)-min(t);t2=max(t); | ||
tt=linspace(min(t),max(t),200); | ||
ff=pchip(t,f,tt); | ||
n=1;J(n)=trapz(tt,ff.*(t2-tt).^(n-1))/factorial(n-1)/T^n; | ||
n=2;J(n)=trapz(tt,ff.*(t2-tt).^(n-1))/factorial(n-1)/T^n; | ||
n=3;J(n)=trapz(tt,ff.*(t2-tt).^(n-1))/factorial(n-1)/T^n; | ||
n=4;J(n)=trapz(tt,ff.*(t2-tt).^(n-1))/factorial(n-1)/T^n; | ||
n=5;J(n)=trapz(tt,ff.*(t2-tt).^(n-1))/factorial(n-1)/T^n; | ||
n=6;J(n)=trapz(tt,ff.*(t2-tt).^(n-1))/factorial(n-1)/T^n; | ||
n=7;J(n)=trapz(tt,ff.*(t2-tt).^(n-1))/factorial(n-1)/T^n; | ||
|
||
% | ||
p(1)=(1/2).*(J(2).^2+(-1).*J(1).*(J(3)+(-15).*(J(4)+(-6).*J(5)+14.*J(6) ... | ||
))+(-15).*J(2).*(J(3)+2.*(J(4)+(-25).*J(5)+84.*J(6)))+120.*(J(3) ... | ||
.^2+J(3).*((-8).*J(4)+(-9).*J(5)+105.*J(6))+15.*(2.*J(4).^2+14.*J( ... | ||
5).^2+(-7).*J(4).*(J(5)+2.*J(6))))).^(-1).*(J(1).*(J(4)+(-15).*(J( ... | ||
5)+(-6).*J(6)+14.*J(7)))+(-1).*J(2).*(J(3)+(-120).*(J(5)+(-8).*J( ... | ||
6)+21.*J(7)))+15.*(J(3).^2+(-2).*J(3).*(7.*J(4)+(-7).*J(5)+(-120) ... | ||
.*J(6)+420.*J(7))+8.*(8.*J(4).^2+105.*J(5).*(J(5)+(-2).*J(6))+J(4) ... | ||
.*((-51).*J(5)+210.*J(7))))+sqrt(4.*(J(2).^2+(-1).*J(1).*(J(3)+( ... | ||
-15).*(J(4)+(-6).*J(5)+14.*J(6)))+(-15).*J(2).*(J(3)+2.*(J(4)+( ... | ||
-25).*J(5)+84.*J(6)))+120.*(J(3).^2+J(3).*((-8).*J(4)+(-9).*J(5)+ ... | ||
105.*J(6))+15.*(2.*J(4).^2+14.*J(5).^2+(-7).*J(4).*(J(5)+2.*J(6))) ... | ||
)).*((-1).*J(3).^2+J(2).*(J(4)+(-15).*(J(5)+(-6).*J(6)+14.*J(7)))+ ... | ||
15.*J(3).*(J(4)+2.*(J(5)+(-25).*J(6)+84.*J(7)))+(-120).*(J(4).^2+ ... | ||
J(4).*((-8).*J(5)+(-9).*J(6)+105.*J(7))+15.*(2.*J(5).^2+14.*J(6) ... | ||
.^2+(-7).*J(5).*(J(6)+2.*J(7)))))+(J(1).*(J(4)+(-15).*(J(5)+(-6).* ... | ||
J(6)+14.*J(7)))+(-1).*J(2).*(J(3)+(-120).*(J(5)+(-8).*J(6)+21.*J( ... | ||
7)))+15.*(J(3).^2+(-2).*J(3).*(7.*J(4)+(-7).*J(5)+(-120).*J(6)+ ... | ||
420.*J(7))+8.*(8.*J(4).^2+105.*J(5).*(J(5)+(-2).*J(6))+J(4).*(( ... | ||
-51).*J(5)+210.*J(7))))).^2)); | ||
% | ||
p(2)=(-1/2).*(J(2).^2+(-1).*J(1).*(J(3)+(-15).*(J(4)+(-6).*J(5)+14.*J( ... | ||
6)))+(-15).*J(2).*(J(3)+2.*(J(4)+(-25).*J(5)+84.*J(6)))+120.*(J(3) ... | ||
.^2+J(3).*((-8).*J(4)+(-9).*J(5)+105.*J(6))+15.*(2.*J(4).^2+14.*J( ... | ||
5).^2+(-7).*J(4).*(J(5)+2.*J(6))))).^(-1).*((-1).*J(1).*(J(4)+( ... | ||
-15).*(J(5)+(-6).*J(6)+14.*J(7)))+J(2).*(J(3)+(-120).*(J(5)+(-8).* ... | ||
J(6)+21.*J(7)))+(-15).*(J(3).^2+(-2).*J(3).*(7.*J(4)+(-7).*J(5)+( ... | ||
-120).*J(6)+420.*J(7))+8.*(8.*J(4).^2+105.*J(5).*(J(5)+(-2).*J(6)) ... | ||
+J(4).*((-51).*J(5)+210.*J(7))))+sqrt(4.*(J(2).^2+(-1).*J(1).*(J( ... | ||
3)+(-15).*(J(4)+(-6).*J(5)+14.*J(6)))+(-15).*J(2).*(J(3)+2.*(J(4)+ ... | ||
(-25).*J(5)+84.*J(6)))+120.*(J(3).^2+J(3).*((-8).*J(4)+(-9).*J(5)+ ... | ||
105.*J(6))+15.*(2.*J(4).^2+14.*J(5).^2+(-7).*J(4).*(J(5)+2.*J(6))) ... | ||
)).*((-1).*J(3).^2+J(2).*(J(4)+(-15).*(J(5)+(-6).*J(6)+14.*J(7)))+ ... | ||
15.*J(3).*(J(4)+2.*(J(5)+(-25).*J(6)+84.*J(7)))+(-120).*(J(4).^2+ ... | ||
J(4).*((-8).*J(5)+(-9).*J(6)+105.*J(7))+15.*(2.*J(5).^2+14.*J(6) ... | ||
.^2+(-7).*J(5).*(J(6)+2.*J(7)))))+(J(1).*(J(4)+(-15).*(J(5)+(-6).* ... | ||
J(6)+14.*J(7)))+(-1).*J(2).*(J(3)+(-120).*(J(5)+(-8).*J(6)+21.*J( ... | ||
7)))+15.*(J(3).^2+(-2).*J(3).*(7.*J(4)+(-7).*J(5)+(-120).*J(6)+ ... | ||
420.*J(7))+8.*(8.*J(4).^2+105.*J(5).*(J(5)+(-2).*J(6))+J(4).*(( ... | ||
-51).*J(5)+210.*J(7))))).^2)); | ||
% | ||
s2=3.*p(1).^(-1).*(p(1)+(-1).*p(2)).^(-1).*((-1).*J(2).*p(1)+(-4).*( ... | ||
J(2).*p(1).^2.*(2+5.*p(1))+5.*J(5).*(1+6.*p(1).*(1+2.*p(1))))+(( ... | ||
-1).*J(1).*p(1).*(1+4.*p(1).*(2+5.*p(1)))+J(2).*((-1)+12.*p(1) ... | ||
.^2.*(3+10.*p(1)))).*p(2)+J(3).*((-1)+8.*p(2)+12.*p(1).*(p(1).*(3+ ... | ||
p(1).*(10+(-20).*p(2)))+3.*p(2)))+(-4).*J(4).*((-2)+5.*p(2)+3.*p( ... | ||
1).*((-3)+10.*p(2)+20.*p(1).*(p(1)+p(2))))); | ||
% | ||
s3=3.*(p(1)+(-1).*p(2)).^(-1).*p(2).^(-1).*(J(3)+(-8).*J(4)+20.*J(5)+ ... | ||
J(2).*p(1)+(-8).*J(3).*p(1)+20.*J(4).*p(1)+(J(2)+(-36).*J(4)+120.* ... | ||
J(5)+(J(1)+(-36).*J(3)+120.*J(4)).*p(1)).*p(2)+(-4).*(9.*J(3)+( ... | ||
-60).*J(5)+(-2).*(J(1)+30.*J(4)).*p(1)+J(2).*((-2)+9.*p(1))).*p(2) ... | ||
.^2+20.*(J(2)+(-6).*J(3)+12.*J(4)+J(1).*p(1)+(-6).*(J(2)+(-2).*J( ... | ||
3)).*p(1)).*p(2).^3); | ||
% | ||
s1=6.*((-1)+(-3).*p(2)+(-1).*p(1).*(3+6.*p(2))).^(-1).*((-1).*J(3)+( ... | ||
1/2).*((s3+2.*s3.*p(1)+(-2).*J(1).*p(1)).*p(2)+(-2).*J(2).*(p(1)+ ... | ||
p(2))+s2.*p(1).*(1+2.*p(2)))); | ||
% | ||
tau1=p(1)*T; | ||
tau2=p(2)*T; | ||
Q1=exp(-min(t)/tau1); | ||
Q2=exp(-min(t)/tau2); | ||
s2=s2/Q1; | ||
s3=s3/Q2; | ||
% | ||
sf0=[s1 s2 tau1 s3 tau2]; | ||
fun = @(s,t) (s(1)*sf0(1))+... | ||
(s(2)*sf0(2))*exp(-t/(s(3)*sf0(3)))+... | ||
(s(4)*sf0(4))*exp(-t/(s(5)*sf0(5))); | ||
s0=[1 1 1 1 1]; | ||
end | ||
|
||
%--- use lsqcurvefit if not lsq_val='no' | ||
if isequal(lsq_val,'no') | ||
s=sf0; | ||
else | ||
cond=1; | ||
while cond | ||
[s,RESNORM,RESIDUAL,EXIT]=lsqcurvefit(fun,s0,t,f,[],[],options); | ||
cond=not(not(EXIT==0)); | ||
s0=s; | ||
end | ||
s=s0.*sf0; | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
Copyright (c) 2010, LPS | ||
All rights reserved. | ||
|
||
Redistribution and use in source and binary forms, with or without | ||
modification, are permitted provided that the following conditions are | ||
met: | ||
|
||
* Redistributions of source code must retain the above copyright | ||
notice, this list of conditions and the following disclaimer. | ||
* Redistributions in binary form must reproduce the above copyright | ||
notice, this list of conditions and the following disclaimer in | ||
the documentation and/or other materials provided with the distribution | ||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | ||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | ||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | ||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | ||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | ||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | ||
POSSIBILITY OF SUCH DAMAGE. |
Oops, something went wrong.