-
Notifications
You must be signed in to change notification settings - Fork 44
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add MNIST test to run multi-node distributed training using KFTO
- Loading branch information
1 parent
1aece45
commit d2e2371
Showing
4 changed files
with
502 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
/* | ||
Copyright 2023. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
*/ | ||
|
||
package kfto | ||
|
||
import ( | ||
"bytes" | ||
"fmt" | ||
"os" | ||
"testing" | ||
|
||
. "github.com/onsi/gomega" | ||
. "github.com/project-codeflare/codeflare-common/support" | ||
|
||
corev1 "k8s.io/api/core/v1" | ||
"k8s.io/apimachinery/pkg/api/resource" | ||
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" | ||
|
||
kftov1 "github.com/kubeflow/training-operator/pkg/apis/kubeflow.org/v1" | ||
) | ||
|
||
func TestPyTorchJobMnistCpu(t *testing.T) { | ||
runKFTOPyTorchMnistJob(t, 0, "", GetCudaTrainingImage(), "resources/requirements.txt") | ||
} | ||
|
||
func TestPyTorchJobMnistWithCuda(t *testing.T) { | ||
runKFTOPyTorchMnistJob(t, 1, "nvidia.com/gpu", GetCudaTrainingImage(), "resources/requirements.txt") | ||
} | ||
|
||
func TestPyTorchJobMnistWithROCm(t *testing.T) { | ||
runKFTOPyTorchMnistJob(t, 1, "amd.com/gpu", GetROCmTrainingImage(), "resources/requirements-rocm.txt") | ||
} | ||
|
||
func runKFTOPyTorchMnistJob(t *testing.T, numGpus int, gpuLabel string, image string, requirementsFile string) { | ||
test := With(t) | ||
|
||
// Create a namespace | ||
namespace := test.NewTestNamespace() | ||
|
||
workingDirectory, err := os.Getwd() | ||
test.Expect(err).ToNot(HaveOccurred()) | ||
|
||
mnist, err := os.ReadFile(workingDirectory + "/resources/mnist.py") | ||
test.Expect(err).ToNot(HaveOccurred()) | ||
|
||
requirementsFileName, err := os.ReadFile(workingDirectory + "/" + requirementsFile) | ||
if numGpus > 0 { | ||
mnist = bytes.Replace(mnist, []byte("accelerator=\"has to be specified\""), []byte("accelerator=\"gpu\""), 1) | ||
} else { | ||
mnist = bytes.Replace(mnist, []byte("accelerator=\"has to be specified\""), []byte("accelerator=\"cpu\""), 1) | ||
} | ||
config := CreateConfigMap(test, namespace.Name, map[string][]byte{ | ||
// MNIST Ray Notebook | ||
"mnist.py": mnist, | ||
"requirements.txt": requirementsFileName, | ||
}) | ||
|
||
// Create PVC for trained model | ||
outputPvc := CreatePersistentVolumeClaim(test, namespace.Name, "50Gi", corev1.ReadWriteMany) | ||
defer test.Client().Core().CoreV1().PersistentVolumeClaims(namespace.Name).Delete(test.Ctx(), outputPvc.Name, metav1.DeleteOptions{}) | ||
|
||
// Create training PyTorch job | ||
tuningJob := createKFTOPyTorchMnistJob(test, namespace.Name, *config, gpuLabel, numGpus, outputPvc.Name, image) | ||
defer test.Client().Kubeflow().KubeflowV1().PyTorchJobs(namespace.Name).Delete(test.Ctx(), tuningJob.Name, *metav1.NewDeleteOptions(0)) | ||
|
||
// Make sure the PyTorch job is running | ||
test.Eventually(PyTorchJob(test, namespace.Name, tuningJob.Name), TestTimeoutDouble). | ||
Should(WithTransform(PyTorchJobConditionRunning, Equal(corev1.ConditionTrue))) | ||
|
||
// Make sure the PyTorch job succeeded | ||
test.Eventually(PyTorchJob(test, namespace.Name, tuningJob.Name), TestTimeoutDouble).Should(WithTransform(PyTorchJobConditionSucceeded, Equal(corev1.ConditionTrue))) | ||
test.T().Logf("PytorchJob %s/%s ran successfully", tuningJob.Namespace, tuningJob.Name) | ||
|
||
} | ||
|
||
func createKFTOPyTorchMnistJob(test Test, namespace string, config corev1.ConfigMap, gpuLabel string, numGpus int, outputPvcName string, baseImage string) *kftov1.PyTorchJob { | ||
|
||
var useGPU = false | ||
var backend = "" | ||
|
||
if gpuLabel == "nvidia.com/gpu" && numGpus > 0 { | ||
useGPU = true | ||
backend = "nccl" | ||
} | ||
if gpuLabel == "amd.com/gpu" && numGpus > 0 { | ||
useGPU = true | ||
backend = "mpi" | ||
} | ||
if backend == "" { | ||
backend = "gloo" | ||
} | ||
|
||
tuningJob := &kftov1.PyTorchJob{ | ||
TypeMeta: metav1.TypeMeta{ | ||
APIVersion: corev1.SchemeGroupVersion.String(), | ||
Kind: "PyTorchJob", | ||
}, | ||
ObjectMeta: metav1.ObjectMeta{ | ||
GenerateName: "kfto-mnist-", | ||
}, | ||
Spec: kftov1.PyTorchJobSpec{ | ||
PyTorchReplicaSpecs: map[kftov1.ReplicaType]*kftov1.ReplicaSpec{ | ||
"Master": { | ||
Replicas: Ptr(int32(1)), | ||
RestartPolicy: kftov1.RestartPolicyOnFailure, | ||
Template: corev1.PodTemplateSpec{ | ||
Spec: corev1.PodSpec{ | ||
Containers: []corev1.Container{ | ||
{ | ||
Name: "pytorch", | ||
Image: baseImage, | ||
ImagePullPolicy: corev1.PullIfNotPresent, | ||
Command: []string{ | ||
"/bin/bash", "-c", | ||
fmt.Sprintf(`python -m venv /tmp/venv && \ | ||
source /tmp/venv/bin/activate && \ | ||
pip install --no-cache-dir -r /mnt/files/requirements.txt && \ | ||
python /mnt/files/mnist.py --epochs 1 --save-model --backend %s`, backend), | ||
}, | ||
Env: []corev1.EnvVar{ | ||
{ | ||
Name: "MASTER_ADDR", | ||
Value: "mnist-pytorch-distributed-master-0.mnist-pytorch-distributed-master", | ||
}, | ||
{ | ||
Name: "MASTER_PORT", | ||
Value: "29500", | ||
}, | ||
{ | ||
Name: "WORLD_SIZE", | ||
Value: "3", | ||
}, | ||
}, | ||
VolumeMounts: []corev1.VolumeMount{ | ||
{ | ||
Name: config.Name, | ||
MountPath: "/mnt/files", | ||
ReadOnly: true, | ||
}, | ||
}, | ||
}, | ||
}, | ||
Volumes: []corev1.Volume{ | ||
{ | ||
Name: config.Name, | ||
VolumeSource: corev1.VolumeSource{ | ||
ConfigMap: &corev1.ConfigMapVolumeSource{ | ||
LocalObjectReference: corev1.LocalObjectReference{ | ||
Name: config.Name, | ||
}, | ||
}, | ||
}, | ||
}, | ||
}, | ||
RestartPolicy: corev1.RestartPolicyOnFailure, | ||
}, | ||
}, | ||
}, | ||
"Worker": { | ||
Replicas: Ptr(int32(1)), | ||
RestartPolicy: kftov1.RestartPolicyOnFailure, | ||
Template: corev1.PodTemplateSpec{ | ||
Spec: corev1.PodSpec{ | ||
Containers: []corev1.Container{ | ||
{ | ||
Name: "pytorch", | ||
Image: baseImage, | ||
ImagePullPolicy: corev1.PullIfNotPresent, | ||
Command: []string{ | ||
"/bin/bash", "-c", | ||
fmt.Sprintf(`python -m venv /tmp/venv && \ | ||
source /tmp/venv/bin/activate && \ | ||
pip install --no-cache-dir -r /mnt/files/requirements.txt && \ | ||
python /mnt/files/mnist.py --epochs 1 --save-model --backend %s`, backend), | ||
}, | ||
Env: []corev1.EnvVar{ | ||
{ | ||
Name: "MASTER_ADDR", | ||
Value: "mnist-pytorch-distributed-master-0.mnist-pytorch-distributed-master", | ||
}, | ||
{ | ||
Name: "MASTER_PORT", | ||
Value: "29500", | ||
}, | ||
{ | ||
Name: "WORLD_SIZE", | ||
Value: "3", | ||
}, | ||
}, | ||
VolumeMounts: []corev1.VolumeMount{ | ||
{ | ||
Name: config.Name, | ||
MountPath: "/mnt/files", | ||
ReadOnly: true, | ||
}, | ||
}, | ||
}, | ||
}, | ||
Volumes: []corev1.Volume{ | ||
{ | ||
Name: config.Name, | ||
VolumeSource: corev1.VolumeSource{ | ||
ConfigMap: &corev1.ConfigMapVolumeSource{ | ||
LocalObjectReference: corev1.LocalObjectReference{ | ||
Name: config.Name, | ||
}, | ||
}, | ||
}, | ||
}, | ||
}, | ||
RestartPolicy: corev1.RestartPolicyOnFailure, | ||
}, | ||
}, | ||
}, | ||
}, | ||
}, | ||
} | ||
|
||
if useGPU { | ||
// Update resource lists | ||
tuningJob.Spec.PyTorchReplicaSpecs["Master"].Template.Spec.Containers[0].Resources = corev1.ResourceRequirements{ | ||
Limits: corev1.ResourceList{ | ||
corev1.ResourceCPU: resource.MustParse("2"), | ||
corev1.ResourceMemory: resource.MustParse("8Gi"), | ||
corev1.ResourceName(gpuLabel): resource.MustParse(fmt.Sprint(numGpus)), | ||
}, | ||
} | ||
tuningJob.Spec.PyTorchReplicaSpecs["Worker"].Template.Spec.Containers[0].Resources = corev1.ResourceRequirements{ | ||
Limits: corev1.ResourceList{ | ||
corev1.ResourceCPU: resource.MustParse("2"), | ||
corev1.ResourceMemory: resource.MustParse("8Gi"), | ||
corev1.ResourceName(gpuLabel): resource.MustParse(fmt.Sprint(numGpus)), | ||
}, | ||
} | ||
|
||
// Update tolerations | ||
tuningJob.Spec.PyTorchReplicaSpecs["Master"].Template.Spec.Tolerations = []corev1.Toleration{ | ||
{ | ||
Key: gpuLabel, | ||
Operator: corev1.TolerationOpExists, | ||
}, | ||
} | ||
tuningJob.Spec.PyTorchReplicaSpecs["Worker"].Template.Spec.Tolerations = []corev1.Toleration{ | ||
{ | ||
Key: gpuLabel, | ||
Operator: corev1.TolerationOpExists, | ||
}, | ||
} | ||
} | ||
|
||
tuningJob, err := test.Client().Kubeflow().KubeflowV1().PyTorchJobs(namespace).Create(test.Ctx(), tuningJob, metav1.CreateOptions{}) | ||
test.Expect(err).NotTo(HaveOccurred()) | ||
test.T().Logf("Created PytorchJob %s/%s successfully", tuningJob.Namespace, tuningJob.Name) | ||
|
||
return tuningJob | ||
} |
Oops, something went wrong.