Skip to content

A Python Package for Visualizing and Analyzing Hyperspectral Data in Coastal Environments

License

Notifications You must be signed in to change notification settings

opengeos/HyperCoast

Repository files navigation

HyperCoast

image image image image Conda Recipe Conda Downloads

A Python Package for Visualizing and Analyzing Hyperspectral Data in Coastal Environments

Introduction

HyperCoast is a Python package designed to provide an accessible and comprehensive set of tools for visualizing and analyzing hyperspectral data in coastal environments. Leveraging the capabilities of popular packages like Leafmap and PyVista, HyperCoast streamlines the exploration and interpretation of complex hyperspectral remote sensing data from existing spaceborne and airborne missions. It is also poised to support future hyperspectral missions, such as NASA's SBG and GLIMR. It enables researchers and environmental managers to gain deeper insights into the dynamic processes occurring in aquatic environments.

HyperCoast supports the reading and visualization of hyperspectral data from various missions, including AVIRIS, NEON, PACE, EMIT, and DESIS, along with other datasets like ECOSTRESS. Users can interactively explore hyperspectral data, extract spectral signatures, change band combinations and colormaps, visualize data in 3D, and perform interactive slicing and thresholding operations (see Figure 1). Additionally, by leveraging the earthaccess package, HyperCoast provides tools for interactively searching NASA's hyperspectral data. This makes HyperCoast a versatile and powerful tool for working with hyperspectral data globally, with a particular focus on coastal regions.

EMIT Figure 1. An example of visualizing NASA EMIT hyperspectral data using HyperCoast.

Features

  • Searching for NASA hyperspectral data interactively
  • Interactive visualization and analysis of hyperspectral data, such as AVIRIS, DESIS, EMIT, PACE, NEON AOP
  • Interactive visualization of NASA ECOSTRESS data
  • Interactive visualization of PACE chlorophyll-a data
  • Interactive extraction and visualization of spectral signatures
  • Changing band combinations and colormaps interactively
  • Visualizing hyperspectral data in 3D
  • Visualizing ERA5 temperature data in 3D
  • Interactive slicing and thresholding of hyperspectral data in 3D
  • Saving spectral signatures as CSV files

Demos

  • Visualizing hyperspectral data in 3D (notebook)

Cube

  • Interactive slicing of hyperspectral data in 3D (notebook)

Slicing

  • Interactive thresholding of hyperspectral data in 3D (notebook)

Slicing

  • Visualizing ERA5 temperature data in 3D (notebook)

ERA5

  • Changing band combinations and colormaps interactively (notebook)

colormap

AVIRIS

DESIS

  • Visualizing NASA EMIT hyperspectral data interactively (notebook)

EMIT

  • Visualizing NASA PACE hyperspectral data interactively (notebook)

PACE

NEON

  • Interactive visualization of PACE chlorophyll-a data (notebook)

Chla

Acknowledgement

The HyperCoast project draws inspiration from the nasa/EMIT-Data-Resources repository. Credit goes to the original authors. We also acknowledge the NASA EMIT program support through grant no. 80NSSC24K0865.