-
-
Notifications
You must be signed in to change notification settings - Fork 316
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add notebook for using Maxar Open Data (#198)
- Loading branch information
Showing
4 changed files
with
317 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,314 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Segmenting satellite imagery from the Maxar Open Data Program\n", | ||
"\n", | ||
"[![image](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/opengeos/segment-geospatial/blob/main/docs/examples/maxar_open_data.ipynb)\n", | ||
"[![image](https://img.shields.io/badge/Open-Planetary%20Computer-black?style=flat&logo=microsoft)](https://pccompute.westeurope.cloudapp.azure.com/compute/hub/user-redirect/git-pull?repo=https://github.com/opengeos/segment-geospatial&urlpath=lab/tree/segment-geospatial/docs/examples/maxar_open_data.ipynb&branch=main)\n", | ||
"[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/opengeos/segment-geospatial/blob/main/docs/examples/maxar_open_data.ipynb)\n", | ||
"\n", | ||
"This notebook shows how to segment satellite imagery from the [Maxar Open Data](https://github.com/opengeos/maxar-open-data) program for Libya floods. \n", | ||
"\n", | ||
"Make sure you use GPU runtime for this notebook. For Google Colab, go to `Runtime` -> `Change runtime type` and select `GPU` as the hardware accelerator. " | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Install dependencies\n", | ||
"\n", | ||
"Uncomment and run the following cell to install the required dependencies." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# %pip install segment-geospatial" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import leafmap\n", | ||
"from samgeo import SamGeo, raster_to_vector, overlay_images" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Download sample data\n", | ||
"\n", | ||
"First, let's download a sample image of Derna, Libya from [here](https://drive.google.com/file/d/1jIIC5hvSPeJEC0fbDhtxVWk2XV9AxsQD/view?usp=sharing)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"url = 'https://drive.google.com/file/d/1jIIC5hvSPeJEC0fbDhtxVWk2XV9AxsQD/view?usp=sharing'" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"leafmap.download_file(url, output='image.tif')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Create an interactive map" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"m = leafmap.Map(height=\"600px\")\n", | ||
"m.add_basemap(\"SATELLITE\")\n", | ||
"m.add_raster('image.tif', layer_name=\"Image\")\n", | ||
"m.add_layer_manager()\n", | ||
"m" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Initialize SAM class" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"There are several tunable parameters in automatic mask generation that control how densely points are sampled and what the thresholds are for removing low quality or duplicate masks. Additionally, generation can be automatically run on crops of the image to get improved performance on smaller objects, and post-processing can remove stray pixels and holes. Here is an example configuration that samples more masks:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"sam_kwargs = {\n", | ||
" \"points_per_side\": 32,\n", | ||
" \"pred_iou_thresh\": 0.86,\n", | ||
" \"stability_score_thresh\": 0.92,\n", | ||
" \"crop_n_layers\": 1,\n", | ||
" \"crop_n_points_downscale_factor\": 2,\n", | ||
" \"min_mask_region_area\": 80,\n", | ||
"}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"sam = SamGeo(\n", | ||
" model_type=\"vit_h\",\n", | ||
" sam_kwargs=sam_kwargs,\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Segment the image" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"sam.generate('image.tif', output=\"mask.tif\", foreground=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Convert raster to vector" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"raster_to_vector('mask.tif', output='mask.shp')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Display the segmentation result\n", | ||
"\n", | ||
"First, let's show the result as a binary image." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"sam.show_masks(cmap=\"binary_r\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Display the annotations (each mask with a random color)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"sam.show_anns(axis=\"off\", opacity=1, output=\"annotation.tif\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Compare images with a slider" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"leafmap.image_comparison(\n", | ||
" 'image.tif',\n", | ||
" \"annotation.tif\",\n", | ||
" label1=\"Image\",\n", | ||
" label2=\"Segmentation\",\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Overlay the annotations on the image and use the slider to change the opacity interactively." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"overlay_images('image.tif', \"annotation.tif\", backend=\"TkAgg\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Display images on an interactive map." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"m.add_raster('mask.tif', layer_name='Mask', nodata=0)\n", | ||
"m.add_raster('annotation.tif', layer_name='Annotation')\n", | ||
"m" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"m.add_vector('mask.shp', layer_name='Vector', info_mode=None)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.16" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters