Skip to content

Commit

Permalink
Merge pull request #6073 from openjournals/joss.07273
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Oct 31, 2024
2 parents 3116293 + ccf17bb commit aa0fdf9
Show file tree
Hide file tree
Showing 3 changed files with 601 additions and 0 deletions.
228 changes: 228 additions & 0 deletions joss.07273/10.21105.joss.07273.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,228 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241031005535-c1813be46cfe3eda19dda2dc0e0ecf07025c393d</doi_batch_id>
<timestamp>20241031005535</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>10</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>102</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Krang: Kerr Raytracer for Analytic Null
Geodesics</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Dominic</given_name>
<surname>Chang</surname>
<affiliations>
<institution><institution_name>Department of Physics, Harvard University, USA</institution_name></institution>
<institution><institution_name>Black Hole Initiative at Harvard University, USA</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0001-9939-5257</ORCID>
</person_name>
</contributors>
<publication_date>
<month>10</month>
<day>31</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>7273</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.07273</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.13936258</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7273</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.07273</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.07273</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07273.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Bezanson2017">
<article_title>Julia: A fresh approach to numerical
computing</article_title>
<author>Bezanson</author>
<journal_title>SIAM Review</journal_title>
<issue>1</issue>
<volume>59</volume>
<doi>10.1137/141000671</doi>
<cYear>2017</cYear>
<unstructured_citation>Bezanson, J., Edelman, A., Karpinski,
S., &amp; Shah, V. B. (2017). Julia: A fresh approach to numerical
computing. SIAM Review, 59(1), 65–98.
https://doi.org/10.1137/141000671</unstructured_citation>
</citation>
<citation key="JohnsonRing">
<article_title>Universal interferometric signatures of a
black hole’s photon ring</article_title>
<author>Johnson</author>
<journal_title>Science Advances</journal_title>
<issue>12</issue>
<volume>6</volume>
<doi>10.1126/sciadv.aaz1310</doi>
<cYear>2020</cYear>
<unstructured_citation>Johnson, M. D., Lupsasca, A.,
Strominger, A., Wong, G. N., Hadar, S., Kapec, D., Narayan, R., Chael,
A., Gammie, C. F., Galison, P., Palumbo, D. C. M., Doeleman, S. S.,
Blackburn, L., Wielgus, M., Pesce, D. W., Farah, J. R., &amp; Moran, J.
M. (2020). Universal interferometric signatures of a black hole’s photon
ring. Science Advances, 6(12), eaaz1310.
https://doi.org/10.1126/sciadv.aaz1310</unstructured_citation>
</citation>
<citation key="M87PaperI">
<article_title>First M87 Event Horizon Telescope results. I.
The shadow of the supermassive black hole</article_title>
<author>Event Horizon Telescope Collaboration</author>
<journal_title>The Astrophysical Journal
Letters</journal_title>
<issue>1</issue>
<volume>875</volume>
<doi>10.3847/2041-8213/ab0ec7</doi>
<cYear>2019</cYear>
<unstructured_citation>Event Horizon Telescope
Collaboration. (2019). First M87 Event Horizon Telescope results. I. The
shadow of the supermassive black hole. The Astrophysical Journal
Letters, 875(1), L1.
https://doi.org/10.3847/2041-8213/ab0ec7</unstructured_citation>
</citation>
<citation key="M87PaperII">
<article_title>First M87 Event Horizon Telescope results.
II. Array and instrumentation</article_title>
<author>Event Horizon Telescope Collaboration</author>
<journal_title>The Astrophysical Journal
Letters</journal_title>
<issue>1</issue>
<volume>875</volume>
<doi>10.3847/2041-8213/ab0c96</doi>
<cYear>2019</cYear>
<unstructured_citation>Event Horizon Telescope
Collaboration. (2019). First M87 Event Horizon Telescope results. II.
Array and instrumentation. The Astrophysical Journal Letters, 875(1),
L2. https://doi.org/10.3847/2041-8213/ab0c96</unstructured_citation>
</citation>
<citation key="SgrAPaperI">
<article_title>First Sagittarius A* Event Horizon Telescope
results. I. The shadow of the supermassive black hole in the center of
the Milky Way</article_title>
<author>Event Horizon Telescope Collaboration</author>
<journal_title>The Astrophysical Journal
Letters</journal_title>
<issue>2</issue>
<volume>930</volume>
<doi>10.3847/2041-8213/ac6674</doi>
<cYear>2022</cYear>
<unstructured_citation>Event Horizon Telescope
Collaboration. (2022). First Sagittarius A* Event Horizon Telescope
results. I. The shadow of the supermassive black hole in the center of
the Milky Way. The Astrophysical Journal Letters, 930(2), L12.
https://doi.org/10.3847/2041-8213/ac6674</unstructured_citation>
</citation>
<citation key="lupsasca2024blackholeexplorerphoton">
<article_title>The Black Hole Explorer: photon ring science,
detection, and shape measurement</article_title>
<author>Lupsasca</author>
<journal_title>Space telescopes and instrumentation 2024:
Optical, infrared, and millimeter wave</journal_title>
<volume>13092</volume>
<doi>10.1117/12.3019437</doi>
<cYear>2024</cYear>
<unstructured_citation>Lupsasca, A., Cárdenas-Avendaño, A.,
Palumbo, D. C. M., Johnson, M. D., Gralla, S. E., Marrone, D. P.,
Galison, P., Tiede, P., &amp; Keeble, L. (2024). The Black Hole
Explorer: photon ring science, detection, and shape measurement. In L.
E. Coyle, S. Matsuura, &amp; M. D. Perrin (Eds.), Space telescopes and
instrumentation 2024: Optical, infrared, and millimeter wave (Vol.
13092, p. 130926Q). International Society for Optics; Photonics; SPIE.
https://doi.org/10.1117/12.3019437</unstructured_citation>
</citation>
<citation key="cardenas-avendano">
<article_title>Adaptive analytical ray tracing of black hole
photon rings</article_title>
<author>Cárdenas-Avendaño</author>
<journal_title>Phys. Rev. D</journal_title>
<volume>107</volume>
<doi>10.1103/PhysRevD.107.043030</doi>
<cYear>2023</cYear>
<unstructured_citation>Cárdenas-Avendaño, A., Lupsasca, A.,
&amp; Zhu, H. (2023). Adaptive analytical ray tracing of black hole
photon rings. Phys. Rev. D, 107, 043030.
https://doi.org/10.1103/PhysRevD.107.043030</unstructured_citation>
</citation>
<citation key="Palumbo_2022">
<article_title>Bayesian Accretion Modeling: Axisymmetric
equatorial emission in the Kerr spacetime</article_title>
<author>Palumbo</author>
<journal_title>The Astrophysical Journal</journal_title>
<issue>2</issue>
<volume>939</volume>
<doi>10.3847/1538-4357/ac9ab7</doi>
<cYear>2022</cYear>
<unstructured_citation>Palumbo, D. C. M., Gelles, Z., Tiede,
P., Chang, D. O., Pesce, D. W., Chael, A., &amp; Johnson, M. D. (2022).
Bayesian Accretion Modeling: Axisymmetric equatorial emission in the
Kerr spacetime. The Astrophysical Journal, 939(2), 107.
https://doi.org/10.3847/1538-4357/ac9ab7</unstructured_citation>
</citation>
<citation key="Gradus">
<article_title>Gradus.jl</article_title>
<author>Baker</author>
<doi>10.5281/ZENODO.6471796</doi>
<cYear>2022</cYear>
<unstructured_citation>Baker, F., &amp; Young, A. (2022).
Gradus.jl. Zenodo.
https://doi.org/10.5281/ZENODO.6471796</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.07273/10.21105.joss.07273.pdf
Binary file not shown.
Loading

0 comments on commit aa0fdf9

Please sign in to comment.