Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add spatial simulators results #367

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
102 changes: 102 additions & 0 deletions results/spatial_simulators/data/dataset_info.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
[
{
"dataset_id": "brain",
"dataset_name": "Brain",
"dataset_summary": "10X Visium spatial RNA-seq from adult mouse brain sections paired to single-nucleus RNA-seq",
"dataset_description": "This datasets were generated matched single nucleus (sn, this submission) and Visium spatial RNA-seq (10X Genomics) profiles of adjacent mouse brain sections that contain multiple regions from the telencephalon and diencephalon.",
"data_reference": "10.1038/s41587-021-01139-4",
"data_url": "https://github.com/BayraktarLab/cell2location",
"date_created": "11-12-2024",
"file_size": 44683309
},
{
"dataset_id": "cortex",
"dataset_name": "Cortex",
"dataset_summary": "Scripts and source data for image processing, barcode calling, and cell type annotations in a seqFISH+ experiment.",
"dataset_description": "The dataset includes processed image data, cell type annotations with Louvain clusters, gene IDs for transcript locations, and mRNA point locations, with additional data available on Zenodo.",
"data_reference": "10.1038/s41586-019-1049-y",
"data_url": "https://zenodo.org/records/2669683",
"date_created": "11-12-2024",
"file_size": 20271969
},
{
"dataset_id": "breast",
"dataset_name": "Breast",
"dataset_summary": "A spatially resolved atlas of human breast cancers",
"dataset_description": "This study presents a spatially resolved transcriptomics analysis of human breast cancers.",
"data_reference": "10.1038/s41588-021-00911-1",
"data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE176078",
"date_created": "11-12-2024",
"file_size": 23748327
},
{
"dataset_id": "prostate",
"dataset_name": "Prostate",
"dataset_summary": "Spatially resolved gene expression of human protate tissue slices treated with steroid hormones for 8 hours",
"dataset_description": "Spatially resolved gene expression was prepard by dissociated hman prostate tissue to single cells, and collected & prepped for RNA-seq using the Visium Spatial Gene Expression kit.",
"data_reference": "10.1016/j.isci.2021.102640",
"data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159697",
"date_created": "11-12-2024",
"file_size": 20645737
},
{
"dataset_id": "pdac",
"dataset_name": "pancreatic ductal adenocarcinomas",
"dataset_summary": "Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas",
"dataset_description": "We developed a multimodal intersection analysis method combining scRNA-seq with spatial transcriptomics to map and characterize the spatial organization and interactions of distinct cell subpopulations in complex tissues, such as primary pancreatic tumors..",
"data_reference": "10.1101/2020.12.01.407460",
"data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111672",
"date_created": "11-12-2024",
"file_size": 18406025
},
{
"dataset_id": "fibrosarcoma",
"dataset_name": "Fibrosarcoma",
"dataset_summary": "Multi-resolution deconvolution of spatial transcriptomics data reveals continuous patterns of Tumor A1 of Tissue 1",
"dataset_description": "Spatial transcriptomics of Tumor A1 of Tissue 1.",
"data_reference": "10.1038/s41587-022-01272-8",
"data_url": "https://github.com/romain-lopez/DestVI-reproducibility",
"date_created": "11-12-2024",
"file_size": 28476822
},
{
"dataset_id": "osteosarcoma",
"dataset_name": "Osteosarcoma",
"dataset_summary": "Spatial profiling of human osteosarcoma cells.",
"dataset_description": "Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.",
"data_reference": "10.1073/pnas.1912459116",
"data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE176078",
"date_created": "11-12-2024",
"file_size": 21082263
},
{
"dataset_id": "gastrulation",
"dataset_name": "Gastrulation",
"dataset_summary": "single-cell and spatial transcriptomic molecular map of mouse gastrulation",
"dataset_description": "Single-Cell omics Data across Mouse Gastrulation and Highly multiplexed spatially resolved gene expression profiling of Early Organogenesis.",
"data_reference": "10.1038/s41587-021-01006-2",
"data_url": "https://content.cruk.cam.ac.uk/jmlab/SpatialMouseAtlas2020/",
"date_created": "11-12-2024",
"file_size": 15690550
},
{
"dataset_id": "olfactorybulb",
"dataset_name": "Olfactorybulb",
"dataset_summary": "Single-cell and spatial transcriptomic of mouse olfactory bulb",
"dataset_description": "Single-cell and spatial transcriptomic of mouse olfactory bulb",
"data_reference": "10.1126/science.aaf2403",
"data_url": "http://ww1.spatialtranscriptomicsresearch.org/?usid=24&utid=8672855942",
"date_created": "11-12-2024",
"file_size": 2341323
},
{
"dataset_id": "hindlimbmuscle",
"dataset_name": "Hindlimbmuscle",
"dataset_summary": "Spatial RNA sequencing of regenerating mouse hindlimb muscle",
"dataset_description": "The spatial transcriptomics datasets regenerates mouse muscle tissue generated with the 10x Genomics Visium platform.",
"data_reference": "10.1101/2020.12.01.407460",
"data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161318",
"date_created": "11-12-2024",
"file_size": 20088216
}
]
146 changes: 146 additions & 0 deletions results/spatial_simulators/data/method_info.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
[
{
"task_id": "methods",
"method_id": "scdesign2",
"method_name": "scDesign2",
"method_summary": "A transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured",
"method_description": "scDesign2 is a transparent simulator that achieves all three goals (preserving genes, capturing gene correlations, and generating any \nnumber of cells with varying sequencing depths) and generates high-fidelity synthetic data for multiple single-cell gene expression \ncount-based technologies.\n",
"is_baseline": false,
"references_doi": "10.1186/s13059-021-02367-2",
"references_bibtex": null,
"code_url": "https://github.com/JSB-UCLA/scDesign2",
"documentation_url": "https://htmlpreview.github.io/?https://github.com/JSB-UCLA/scDesign2/blob/master/vignettes/scDesign2.html",
"image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/scdesign2:build_main",
"implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/bf1f6d13221baeab459bdadf6993650f03ddb1f2/src/methods/scdesign2",
"code_version": "build_main",
"commit_sha": "bf1f6d13221baeab459bdadf6993650f03ddb1f2"
},
{
"task_id": "methods",
"method_id": "scdesign3",
"method_name": "scDesign3",
"method_summary": "A probabilistic model that unifies the generation and inference for single-cell and spatial omics data",
"method_description": "scDesign3 offers a probabilistic model that unifies the generation and inference\nfor single-cell and spatial omics data. The model's interpretable parameters and\nlikelihood enable scDesign3 to generate customized in silico data and unsupervisedly\nassess the goodness-of-fit of inferred cell latent structures (for example, clusters,\ntrajectories and spatial locations).\n",
"is_baseline": false,
"references_doi": "10.1038/s41587-023-01772-1",
"references_bibtex": null,
"code_url": "https://github.com/SONGDONGYUAN1994/scDesign3",
"documentation_url": "https://www.bioconductor.org/packages/release/bioc/html/scDesign3.html",
"image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/scdesign3:build_main",
"implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/bf1f6d13221baeab459bdadf6993650f03ddb1f2/src/methods/scdesign3",
"code_version": "build_main",
"commit_sha": "bf1f6d13221baeab459bdadf6993650f03ddb1f2"
},
{
"task_id": "methods",
"method_id": "sparsim",
"method_name": "SPARsim",
"method_summary": "SPARSim single cell is a count data simulator for scRNA-seq data.",
"method_description": "SPARSim is a scRNA-seq count data simulator based on a Gamma-Multivariate Hypergeometric model. \nIt allows to generate count data that resembles real data in terms of count intensity, variability and sparsity.\n",
"is_baseline": false,
"references_doi": "10.1093/bioinformatics/btz752",
"references_bibtex": null,
"code_url": "https://gitlab.com/sysbiobig/sparsim",
"documentation_url": "https://gitlab.com/sysbiobig/sparsim/-/blob/master/vignettes/sparsim.Rmd",
"image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/sparsim:build_main",
"implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/bf1f6d13221baeab459bdadf6993650f03ddb1f2/src/methods/sparsim",
"code_version": "build_main",
"commit_sha": "bf1f6d13221baeab459bdadf6993650f03ddb1f2"
},
{
"task_id": "methods",
"method_id": "splatter",
"method_name": "Splatter",
"method_summary": "A single cell RNA-seq data simulator based on a gamma-Poisson distribution.",
"method_description": "The Splat model is a gamma-Poisson distribution used to generate a gene by cell matrix of counts. Mean expression levels for each gene are simulated from a gamma distribution and the Biological Coefficient of Variation is used to enforce a mean-variance trend before counts are simulated from a Poisson distribution.\n",
"is_baseline": false,
"references_doi": "10.1186/s13059-017-1305-0",
"references_bibtex": null,
"code_url": "https://github.com/Oshlack/splatter",
"documentation_url": "https://bioconductor.org/packages/devel/bioc/vignettes/splatter/inst/doc/splatter.html",
"image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/splatter:build_main",
"implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/bf1f6d13221baeab459bdadf6993650f03ddb1f2/src/methods/splatter",
"code_version": "build_main",
"commit_sha": "bf1f6d13221baeab459bdadf6993650f03ddb1f2"
},
{
"task_id": "methods",
"method_id": "srtsim",
"method_name": "SRTsim",
"method_summary": "An SRT-specific simulator for scalable, reproducible, and realistic SRT simulations.",
"method_description": "A key benefit of srtsim is its ability to maintain location-wise and gene-wise SRT count properties and \npreserve spatial expression patterns, enabling evaluation of SRT method performance using synthetic data. \n",
"is_baseline": false,
"references_doi": "10.1186/s13059-023-02879-z",
"references_bibtex": null,
"code_url": "https://github.com/xzhoulab/srtsim",
"documentation_url": "https://xzhoulab.github.io/SRTsim",
"image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/srtsim:build_main",
"implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/bf1f6d13221baeab459bdadf6993650f03ddb1f2/src/methods/srtsim",
"code_version": "build_main",
"commit_sha": "bf1f6d13221baeab459bdadf6993650f03ddb1f2"
},
{
"task_id": "methods",
"method_id": "symsim",
"method_name": "symsim",
"method_summary": "Simulating multiple faceted variability in single cell RNA sequencing",
"method_description": "SymSim is a simulator for modeling single-cell RNA-Seq data, accounting for three primary sources of variation: intrinsic transcription noise, extrinsic variation from different cell states, \nand technical variation from measurement noise and bias.\n",
"is_baseline": false,
"references_doi": "10.1038/s41467-019-10500-w",
"references_bibtex": null,
"code_url": "https://github.com/YosefLab/SymSim",
"documentation_url": "https://github.com/YosefLab/SymSim/blob/master/vignettes/SymSimTutorial.Rmd",
"image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/symsim:build_main",
"implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/bf1f6d13221baeab459bdadf6993650f03ddb1f2/src/methods/symsim",
"code_version": "build_main",
"commit_sha": "bf1f6d13221baeab459bdadf6993650f03ddb1f2"
},
{
"task_id": "methods",
"method_id": "zinbwave",
"method_name": "zinbwave",
"method_summary": "A general and flexible method for signal extraction from single-cell RNA-seq data",
"method_description": "ZINB-WaVE is a general and flexible zero-inflated negative binomial model, which leads to low-dimensional representations \nof the data that account for zero inflation (dropouts), over-dispersion, and the count nature of the data.\n",
"is_baseline": false,
"references_doi": "10.1038/s41467-017-02554-5",
"references_bibtex": null,
"code_url": "https://github.com/drisso/zinbwave",
"documentation_url": "https://bioconductor.org/packages/release/bioc/html/zinbwave.html",
"image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/zinbwave:build_main",
"implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/bf1f6d13221baeab459bdadf6993650f03ddb1f2/src/methods/zinbwave",
"code_version": "build_main",
"commit_sha": "bf1f6d13221baeab459bdadf6993650f03ddb1f2"
},
{
"task_id": "control_methods",
"method_id": "positive",
"method_name": "positive",
"method_summary": "A positive control method.",
"method_description": "A positive control method. \n",
"is_baseline": true,
"references_doi": null,
"references_bibtex": null,
"code_url": "https://github.com/openproblems-bio/task_spatial_simulators",
"documentation_url": null,
"image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/control_methods/positive:build_main",
"implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/bf1f6d13221baeab459bdadf6993650f03ddb1f2/src/control_methods/positive",
"code_version": "build_main",
"commit_sha": "bf1f6d13221baeab459bdadf6993650f03ddb1f2"
},
{
"task_id": "control_methods",
"method_id": "negative",
"method_name": "negative",
"method_summary": "A negative control method.",
"method_description": "A negative control method.\n",
"is_baseline": true,
"references_doi": null,
"references_bibtex": null,
"code_url": "https://github.com/openproblems-bio/task_spatial_simulators",
"documentation_url": null,
"image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/control_methods/negative:build_main",
"implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/bf1f6d13221baeab459bdadf6993650f03ddb1f2/src/control_methods/negative",
"code_version": "build_main",
"commit_sha": "bf1f6d13221baeab459bdadf6993650f03ddb1f2"
}
]
Loading
Loading