Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Backport 2.x] Add query assist data summary agent template (#875) #922

Merged
merged 1 commit into from
Oct 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ Inspired from [Keep a Changelog](https://keepachangelog.com/en/1.1.0/)
### Infrastructure
### Documentation
- Add knowledge base alert agent into sample templates ([#874](https://github.com/opensearch-project/flow-framework/pull/874))
- Add query assist data summary agent into sample templates ([#875](https://github.com/opensearch-project/flow-framework/pull/875))

### Maintenance
### Refactoring
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
{
"name": "Query Assist Data Summary Agent",
"description": "Create Query Assist Data Summary Agent using Claude on BedRock",
"use_case": "REGISTER_AGENT",
"version": {
"template": "1.0.0",
"compatibility": ["2.17.0", "3.0.0"]
},
"workflows": {
"provision": {
"user_params": {},
"nodes": [
{
"id": "create_claude_connector",
"type": "create_connector",
"previous_node_inputs": {},
"user_inputs": {
"version": "1",
"name": "Claude instant runtime Connector",
"protocol": "aws_sigv4",
"description": "The connector to BedRock service for Claude model",
"actions": [
{
"headers": {
"x-amz-content-sha256": "required",
"content-type": "application/json"
},
"method": "POST",
"request_body": "{\"prompt\":\"${parameters.prompt}\", \"max_tokens_to_sample\":${parameters.max_tokens_to_sample}, \"temperature\":${parameters.temperature}, \"anthropic_version\":\"${parameters.anthropic_version}\" }",
"action_type": "predict",
"url": "https://bedrock-runtime.us-west-2.amazonaws.com/model/anthropic.claude-instant-v1/invoke"
}
],
"credential": {
"access_key": "<YOUR_ACCESS_KEY>",
"secret_key": "<YOUR_SECRET_KEY>",
"session_token": "<YOUR_SESSION_TOKEN>"
},
"parameters": {
"region": "us-west-2",
"endpoint": "bedrock-runtime.us-west-2.amazonaws.com",
"content_type": "application/json",
"auth": "Sig_V4",
"max_tokens_to_sample": "8000",
"service_name": "bedrock",
"temperature": "0.0001",
"response_filter": "$.completion",
"anthropic_version": "bedrock-2023-05-31"
}
}
},
{
"id": "register_claude_model",
"type": "register_remote_model",
"previous_node_inputs": {
"create_claude_connector": "connector_id"
},
"user_inputs": {
"description": "Claude model",
"deploy": true,
"name": "claude-instant"
}
},
{
"id": "create_query_assist_data_summary_ml_model_tool",
"type": "create_tool",
"previous_node_inputs": {
"register_claude_model": "model_id"
},
"user_inputs": {
"parameters": {
"prompt": "Human: You are an assistant that helps to summarize the data and provide data insights.\nThe data are queried from OpenSearch index through user's question which was translated into PPL query.\nHere is a sample PPL query: `source=<index> | where <field> = <value>`.\nNow you are given ${parameters.sample_count} sample data out of ${parameters.total_count} total data.\nThe user's question is `${parameters.question}`, the translated PPL query is `${parameters.ppl}` and sample data are:\n```\n${parameters.sample_data}\n```\nCould you help provide a summary of the sample data and provide some useful insights with precise wording and in plain text format, do not use markdown format.\nYou don't need to echo my requirements in response.\n\nAssistant:"
},
"name": "MLModelTool",
"type": "MLModelTool"
}
},
{
"id": "create_query_assist_data_summary_agent",
"type": "register_agent",
"previous_node_inputs": {
"create_query_assist_data_summary_ml_model_tool": "tools"
},
"user_inputs": {
"parameters": {},
"type": "flow",
"name": "Query Assist Data Summary Agent",
"description": "this is an query assist data summary agent"
}
}
]
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
---
name: Query Assist Data Summary Agent
description: Create Query Assist Data Summary Agent using Claude on BedRock
use_case: REGISTER_AGENT
version:
template: 1.0.0
compatibility:
- 2.17.0
- 3.0.0
workflows:
provision:
user_params: {}
nodes:
- id: create_claude_connector
type: create_connector
previous_node_inputs: {}
user_inputs:
version: '1'
name: Claude instant runtime Connector
protocol: aws_sigv4
description: The connector to BedRock service for Claude model
actions:
- headers:
x-amz-content-sha256: required
content-type: application/json
method: POST
request_body: '{"prompt":"${parameters.prompt}", "max_tokens_to_sample":${parameters.max_tokens_to_sample},
"temperature":${parameters.temperature}, "anthropic_version":"${parameters.anthropic_version}"
}'
action_type: predict
url: https://bedrock-runtime.us-west-2.amazonaws.com/model/anthropic.claude-instant-v1/invoke
credential:
access_key: "<YOUR_ACCESS_KEY>"
secret_key: "<YOUR_SECRET_KEY>"
session_token: "<YOUR_SESSION_TOKEN>"
parameters:
region: us-west-2
endpoint: bedrock-runtime.us-west-2.amazonaws.com
content_type: application/json
auth: Sig_V4
max_tokens_to_sample: '8000'
service_name: bedrock
temperature: '0.0001'
response_filter: "$.completion"
anthropic_version: bedrock-2023-05-31
- id: register_claude_model
type: register_remote_model
previous_node_inputs:
create_claude_connector: connector_id
user_inputs:
description: Claude model
deploy: true
name: claude-instant
- id: create_query_assist_data_summary_ml_model_tool
type: create_tool
previous_node_inputs:
register_claude_model: model_id
user_inputs:
parameters:
prompt: "Human: You are an assistant that helps to summarize the data and provide data insights.\nThe data are queried from OpenSearch index through user's question which was translated into PPL query.\nHere is a sample PPL query: `source=<index> | where <field> = <value>`.\nNow you are given ${parameters.sample_count} sample data out of ${parameters.total_count} total data.\nThe user's question is `${parameters.question}`, the translated PPL query is `${parameters.ppl}` and sample data are:\n```\n${parameters.sample_data}\n```\nCould you help provide a summary of the sample data and provide some useful insights with precise wording and in plain text format, do not use markdown format.\nYou don't need to echo my requirements in response.\n\nAssistant:"
name: MLModelTool
type: MLModelTool
- id: create_query_assist_data_summary_agent
type: register_agent
previous_node_inputs:
create_alert_summary_ml_model_tool: tools
user_inputs:
parameters: {}
type: flow
name: Query Assist Data Summary Agent
description: this is an query assist data summary agent
Loading