Skip to content

Commit

Permalink
Merge pull request #991 from opentensor/hotfix/3.4.3/synapse-security
Browse files Browse the repository at this point in the history
[Hotfix] Synapse security update
  • Loading branch information
opentaco authored Nov 15, 2022
2 parents ce5b502 + 6dd06f9 commit 1409676
Show file tree
Hide file tree
Showing 3 changed files with 17 additions and 4 deletions.
2 changes: 1 addition & 1 deletion bittensor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
nest_asyncio.apply()

# Bittensor code and protocol version.
__version__ = '3.4.2'
__version__ = '3.4.3'
version_split = __version__.split(".")
__version_as_int__ = (100 * int(version_split[0])) + (10 * int(version_split[1])) + (1 * int(version_split[2]))

Expand Down
4 changes: 4 additions & 0 deletions bittensor/_synapse/text_causallmnext_impl.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,10 @@ def check_forward_response_tensor(self, forward_request_tensor, forward_response
f"[>={forward_request_tensor.shape[0]} x (2 x {self.topk} + 1)], "
f"got: {forward_response_tensor.size(0)} for synapse: {self}")

atol = 1e-6 # absolute tolerance
if (forward_response_tensor < -atol).any():
raise ValueError("forward_response_tensor values below tolerance.")

def check_backward_request_gradient(self, forward_request_tensor, backward_request_gradient):
# forward_request_tensor: [batch_size, sequence_len]
# backward_request_gradient: [batch_size, (topk + 1), max_len]
Expand Down
15 changes: 12 additions & 3 deletions bittensor/utils/tokenizer_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -866,11 +866,17 @@ def unravel_topk_token_phrases(compact_topk: torch.Tensor, topk: int, ignore_ind
[...]]
"""

atol = 1e-6 # absolute tolerance
# Find probability markers (per batch item: topk phrase probabilities + floor_prob)
prob_idx = torch.where(compact_topk <= 1.5)[0] # 0 <= prob <= 1 [batch_size * (topk + 1)], expect token_ids >= 2
prob_idx = torch.where((-atol < compact_topk) & (compact_topk < 1 + atol))[0] # 0 <= prob <= 1 [batch_size * (topk + 1)], expect token_ids >= 2

batch_size = len(prob_idx) // (topk + 1) # (batch_size * (topk + floor)) / (topk + floor)
assert batch_size * (topk + 1) == len(prob_idx), f'{batch_size} * ({topk} + 1) != {len(prob_idx)}' # decoding irregularity otherwise
assert batch_size * (topk + 1) == len(prob_idx), f'unravel_topk_token_phrases() probability marker failure: ' \
f'{batch_size} * ({topk} + 1) != {len(prob_idx)}' # decoding irregularity otherwise

probs = torch.clamp(compact_topk[prob_idx], 0, 1) # [batch_size * (topk + 1)] ensure probabilities within [0, 1]
probs_sum = probs.reshape(batch_size, topk + 1).sum(dim=1) # [batch_size]
assert torch.all((-atol < probs_sum) & (probs_sum < 1 + atol)), f'unravel_topk_token_phrases(): probs_sum not in [0, 1]'

# Obtain phrase lengths and maximum phrase length
phrase_len = prob_idx[1:] - prob_idx[:-1] # [batch_size * (topk + 1) - 1] length of each phrase
Expand Down Expand Up @@ -900,7 +906,7 @@ def unravel_topk_token_phrases(compact_topk: torch.Tensor, topk: int, ignore_ind
topk_tensor -= 2 # remove token offset, overwrites probability column, replace probabilities below

# grafting probability tensors into first column to attach gradients
topk_tensor[:, 0] = compact_topk[prob_idx] # tensor([prob_k=0_b, prob_k=1_b, ..., prob_floor_b])
topk_tensor[:, 0] = probs # tensor([prob_k=0_b, prob_k=1_b, ..., prob_floor_b])

topk_tensor = topk_tensor.reshape(batch_size, topk + 1, max_len) # [batch_size, (topk + 1), max_len] reshaped

Expand Down Expand Up @@ -953,6 +959,9 @@ def phrase_cross_entropy(target_phrases: Union[List[List[int]], torch.Tensor],
topk_probs = topk_tensor[:, :-1, 0] # [batch_size, topk] Probabilities for each phrase in topk
floor_probs = topk_tensor[:, -1, 0] # [batch_size] Floor probabilities as mean probability for non-topk tokens

topk_probs = torch.clamp(topk_probs, 0, 1) # [batch_size, topk] ensure probabilities within [0, 1]
floor_probs = torch.clamp(floor_probs, 0, 1) # [batch_size] ensure floor probabilities within [0, 1]

# === Ensure total probability is 1 ===
total_probs = topk_probs.sum(dim=-1) + max(0, vocab_size_min - topk) * floor_probs # [batch_size] total probs
n_topk_probs = topk_probs / total_probs[:, None] # [batch_size, topk] normalized topk_probs
Expand Down

0 comments on commit 1409676

Please sign in to comment.