Skip to content

Commit

Permalink
SMCRA: Drop getInitialResultCollection
Browse files Browse the repository at this point in the history
  • Loading branch information
jschueller committed Oct 18, 2023
1 parent 43d96d6 commit 0283739
Show file tree
Hide file tree
Showing 6 changed files with 5 additions and 46 deletions.
12 changes: 1 addition & 11 deletions lib/src/SequentialMonteCarloRobustAlgorithm.cxx
Original file line number Diff line number Diff line change
Expand Up @@ -236,13 +236,6 @@ SequentialMonteCarloRobustAlgorithm::OptimizationResultCollection SequentialMont
return resultCollection_;
}

/* Initial results accessor */
SequentialMonteCarloRobustAlgorithm::OptimizationResultCollection SequentialMonteCarloRobustAlgorithm::getInitialResultCollection() const
{
return initialResultCollection_;
}


Sample SequentialMonteCarloRobustAlgorithm::getInitialStartingPoints() const
{
return initialStartingPoints_;
Expand All @@ -256,8 +249,7 @@ String SequentialMonteCarloRobustAlgorithm::__repr__() const
<< ", initialSamplingSize=" << initialSamplingSize_
<< ", initialSearch=" << initialSearch_
<< ", resultCollection=" << resultCollection_
<< ", initialStartingPoints=" << initialStartingPoints_
<< ", initialResultCollection=" << initialResultCollection_;
<< ", initialStartingPoints=" << initialStartingPoints_;
return oss;
}

Expand All @@ -269,7 +261,6 @@ void SequentialMonteCarloRobustAlgorithm::save(Advocate & adv) const
adv.saveAttribute("initialSearch_", initialSearch_);
adv.saveAttribute("resultCollection_", resultCollection_);
adv.saveAttribute("initialStartingPoints_", initialStartingPoints_);
adv.saveAttribute("initialResultCollection_", initialResultCollection_);
}

/* Method load() reloads the object from the StorageManager */
Expand All @@ -280,7 +271,6 @@ void SequentialMonteCarloRobustAlgorithm::load(Advocate & adv)
adv.loadAttribute("initialSearch_", initialSearch_);
adv.loadAttribute("resultCollection_", resultCollection_);
adv.loadAttribute("initialStartingPoints_", initialStartingPoints_);
adv.loadAttribute("initialResultCollection_", initialResultCollection_);
}


Expand Down
6 changes: 0 additions & 6 deletions lib/src/otrobopt/SequentialMonteCarloRobustAlgorithm.hxx
Original file line number Diff line number Diff line change
Expand Up @@ -73,9 +73,6 @@ public:
/** Initial starting points accessor */
OT::Sample getInitialStartingPoints() const;

/** Initial optimization results accessor */
OptimizationResultCollection getInitialResultCollection() const;

/** String converter */
OT::String __repr__() const override;

Expand All @@ -99,9 +96,6 @@ private:
// Initial starting points
OT::Sample initialStartingPoints_;

// Initial problem results
OptimizationResultPersistentCollection initialResultCollection_;

}; /* class SequentialMonteCarloRobustAlgorithm */

} /* namespace OTROBOPT */
Expand Down
14 changes: 1 addition & 13 deletions python/src/SequentialMonteCarloRobustAlgorithm.i
Original file line number Diff line number Diff line change
Expand Up @@ -2,21 +2,9 @@

%{
#include "otrobopt/SequentialMonteCarloRobustAlgorithm.hxx"
#include "openturns/PythonWrappingFunctions.hxx"

namespace OT {
template <>
struct traitsPythonType< OT::OptimizationResult >
{
typedef _PyObject_ Type;
};

}
%}

%include SequentialMonteCarloRobustAlgorithm_doc.i

%template(OptimizationResultCollection) OT::Collection<OT::OptimizationResult>;

%copyctor OTROBOPT::SequentialMonteCarloRobustAlgorithm;
%include otrobopt/SequentialMonteCarloRobustAlgorithm.hxx
namespace OTROBOPT { %extend SequentialMonteCarloRobustAlgorithm { SequentialMonteCarloRobustAlgorithm(const SequentialMonteCarloRobustAlgorithm & other) { return new OTROBOPT::SequentialMonteCarloRobustAlgorithm(other); } } }
12 changes: 0 additions & 12 deletions python/src/SequentialMonteCarloRobustAlgorithm_doc.i.in
Original file line number Diff line number Diff line change
Expand Up @@ -105,18 +105,6 @@ initialSearch : int, 0 by default (no multi-start)

// ---------------------------------------------------------------------

%feature("docstring") OTROBOPT::SequentialMonteCarloRobustAlgorithm::getInitialResultCollection
"Multi-start optimization results accessor.

Optimization results during the initial search phase.

Returns
-------
resultColl : sequence of :class:`openturns.OptimizationResult`
List of optimization results"

// ---------------------------------------------------------------------

%feature("docstring") OTROBOPT::SequentialMonteCarloRobustAlgorithm::getInitialStartingPoints
"Multi-start optimization starting points accessor.

Expand Down
5 changes: 2 additions & 3 deletions python/test/t_SequentialMonteCarloRobustAlgorithm_std.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,5 @@
result = algo.getResult()
print('x*=', result.getOptimalPoint(), 'J(x*)=',
result.getOptimalValue(), 'iteration=', result.getIterationNumber())
# print (algo.getInitialResultCollection())
# print (algo.getInitialStartingPoints())
# print (algo.getResultCollection())
assert len(algo.getInitialStartingPoints()) == 1000
assert len(algo.getResultCollection()) > 10
2 changes: 1 addition & 1 deletion python/test/t_saveload.expout
Original file line number Diff line number Diff line change
Expand Up @@ -8,4 +8,4 @@ measure= class=QuantileMeasure alpha=0.99
measure= class=AggregatedMeasure collection=[class=MeasureEvaluation implementation=class=MeanMeasure,class=MeasureEvaluation implementation=class=VarianceMeasure,class=MeasureEvaluation implementation=class=WorstCaseMeasure minimization=false,class=MeasureEvaluation implementation=class=JointChanceMeasure alpha=0.95,class=MeasureEvaluation implementation=class=IndividualChanceMeasure alpha=class=Point name=Unnamed dimension=1 values=[0.95],class=MeasureEvaluation implementation=class=MeanStandardDeviationTradeoffMeasure alpha=class=Point name=Unnamed dimension=1 values=[0.8],class=MeasureEvaluation implementation=class=QuantileMeasure alpha=0.99]
measureFunction= class=MeanMeasure
problem= class=RobustOptimizationProblem robustnessMeasure=class=MeasureEvaluation implementation=class=MeanMeasure reliabilityMeasure=class=MeasureEvaluation implementation=class=JointChanceMeasure alpha=0.9
algo= class=SequentialMonteCarloRobustAlgorithm, initialSamplingSize=2, initialSearch=1000, resultCollection=[], initialStartingPoints=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=0 dimension=1 data=[], initialResultCollection=[]
algo= class=SequentialMonteCarloRobustAlgorithm, initialSamplingSize=2, initialSearch=1000, resultCollection=[], initialStartingPoints=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=0 dimension=1 data=[]

0 comments on commit 0283739

Please sign in to comment.