Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Deconditioned #44

Merged
merged 4 commits into from
Oct 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 28 additions & 30 deletions lib/src/InverseFORM.cxx
Original file line number Diff line number Diff line change
Expand Up @@ -23,13 +23,20 @@
#include <openturns/Normal.hxx>
#include <openturns/StandardEvent.hxx>
#include <openturns/LinearFunction.hxx>
#include <openturns/ComposedDistribution.hxx>
#include <openturns/ConditionalDistribution.hxx>
#include <openturns/JointDistribution.hxx>
#include <openturns/CompositeRandomVector.hxx>
#include <openturns/ThresholdEvent.hxx>
#include <openturns/ComposedFunction.hxx>
#include <openturns/SpecFunc.hxx>

#if OPENTURNS_VERSION >= 102400
#include <openturns/DeconditionedDistribution.hxx>
#else
#include <openturns/ConditionalDistribution.hxx>
#define DeconditionedDistribution ConditionalDistribution
#endif


using namespace OT;

namespace OTROBOPT {
Expand Down Expand Up @@ -163,7 +170,7 @@ void InverseFORM::run()
// direction
du = -(betaC / dgdunorm) * dgdu - u;
dp = (fabs(dgdp) < (SpecFunc::ScalarEpsilon * SpecFunc::ScalarEpsilon)) ? 0.0 : (u.dot(dgdu) - g + betaC * dgdunorm) / dgdp;
LOGINFO(OSS() << "InverseFORM::run i=" << iteration << " u="<<u.__str__() <<" dgdu="<<dgdu.__str__()<<" du="<<du<<" dgdp="<< dgdp<< " dp="<<dp);
LOGTRACE(OSS() << "InverseFORM::run i=" << iteration << " u="<<u.__str__() <<" dgdu="<<dgdu.__str__()<<" du="<<du<<" dgdp="<< dgdp<< " dp="<<dp);

// update according to the step
Scalar step = fixedStep_ ? fixedStepValue_ : 1.0;
Expand All @@ -178,7 +185,7 @@ void InverseFORM::run()
mnew = meritFunction(unew, gnew);
step *= 0.5;
++ stepIteration;
LOGINFO(OSS() << "InverseFORM::run i=" << iteration << " step=" << step<< "pnew="<<pnew<<" unew="<<unew);
LOGTRACE(OSS() << "InverseFORM::run i=" << iteration << " step=" << step<< "pnew="<<pnew<<" unew="<<unew);
}
while ((!fixedStep_) && (mnew > m) && (stepIteration < variableStepMaxIterations_));

Expand All @@ -187,10 +194,10 @@ void InverseFORM::run()
&&( fabs(gnew) < limitStateConvergence_)
&&( fabs(unew.norm()-fabs(betaC)) < betaConvergence_);

LOGINFO(OSS() << "InverseFORM::run i=" << iteration << " var=" << p <<" beta="<<beta<<" g/go="<<g/g0);
LOGINFO(OSS() << "InverseFORM::run i=" << iteration << " convergence.var=" << fabs(pnew - p) <<" <? "<<variableConvergence_);
LOGINFO(OSS() << "InverseFORM::run i=" << iteration << " convergence.g=" << fabs(gnew) <<" <? "<<limitStateConvergence_);
LOGINFO(OSS() << "InverseFORM::run i=" << iteration << " convergence.beta=" <<fabs(unew.norm()-fabs(betaC)) <<" <? "<<betaConvergence_);
LOGTRACE(OSS() << "InverseFORM::run i=" << iteration << " var=" << p <<" beta="<<beta<<" g/go="<<g/g0);
LOGTRACE(OSS() << "InverseFORM::run i=" << iteration << " convergence.var=" << fabs(pnew - p) <<" <? "<<variableConvergence_);
LOGTRACE(OSS() << "InverseFORM::run i=" << iteration << " convergence.g=" << fabs(gnew) <<" <? "<<limitStateConvergence_);
LOGTRACE(OSS() << "InverseFORM::run i=" << iteration << " convergence.beta=" <<fabs(unew.norm()-fabs(betaC)) <<" <? "<<betaConvergence_);

// for next iteration
m = mnew;
Expand All @@ -199,7 +206,7 @@ void InverseFORM::run()
g = gnew;

beta = signBetaT*u.norm();
LOGINFO(OSS() << "InverseFORM::run i="<<iteration<<" g="<<g<<" du="<<du<<" u="<<u<<" beta="<<betaC<<" dp="<<dp<<" p="<<p<< "m="<<m<<" dgdp="<<dgdp<<" dgdu="<<dgdu<<" dgdunorm="<<dgdunorm<<" rel="<<rel<<" delta="<<delta);
LOGTRACE(OSS() << "InverseFORM::run i="<<iteration<<" g="<<g<<" du="<<du<<" u="<<u<<" beta="<<betaC<<" dp="<<dp<<" p="<<p<< "m="<<m<<" dgdp="<<dgdp<<" dgdu="<<dgdu<<" dgdunorm="<<dgdunorm<<" rel="<<rel<<" delta="<<delta);

++ iteration;
}
Expand All @@ -219,28 +226,23 @@ void InverseFORM::run()

Function InverseFORM::getG(const Scalar p)
{
const Scalar threshold = event_.getThreshold();
const ComparisonOperator op(event_.getOperator());
Function newFunction(event_.getImplementation()->getFunction());

PointWithDescription params(event_.getImplementation()->getFunction().getParameter());
params[parameterIndex_] = p;
newFunction.setParameter(params);
RandomVector antecedent(event_.getImplementation()->getAntecedent().getImplementation()->clone());
const Distribution distribution(antecedent.getDistribution());
#if OPENTURNS_VERSION >= 102300
const JointDistribution * p_joint = dynamic_cast<JointDistribution *>(distribution.getImplementation().get());
#else
const ComposedDistribution * p_joint = dynamic_cast<ComposedDistribution *>(distribution.getImplementation().get());
#endif
if (p_joint)
{
ComposedDistribution::DistributionCollection distributionCollection(p_joint->getDistributionCollection());
for (UnsignedInteger i = 0; i < distributionCollection.getSize(); ++ i)
JointDistribution::DistributionCollection coll(p_joint->getDistributionCollection());
for (UnsignedInteger i = 0; i < coll.getSize(); ++ i)
{
if (distributionCollection[i].getImplementation()->getClassName() == "ConditionalDistribution")
const DeconditionedDistribution * p_conditional = dynamic_cast<DeconditionedDistribution
*>(coll[i].getImplementation().get());
if (p_conditional)
{
DistributionImplementation::PointWithDescriptionCollection parametersCollection(distributionCollection[i].getParametersCollection());
DistributionImplementation::PointWithDescriptionCollection parametersCollection(coll[i].getParametersCollection());
for (UnsignedInteger j = 0; j < parametersCollection.getSize(); ++ j)
{
const String marginalName(parametersCollection[j].getName());
Expand All @@ -253,21 +255,17 @@ Function InverseFORM::getG(const Scalar p)
}
}
}
const ConditionalDistribution * p_conditional = dynamic_cast<ConditionalDistribution *>(distributionCollection[i].getImplementation().get());
if (p_conditional)
{
Distribution conditioning(p_conditional->getConditioningDistribution());
conditioning.setParametersCollection(parametersCollection);
ConditionalDistribution newConditional(p_conditional->getConditionedDistribution(), conditioning);
distributionCollection[i] = newConditional;
ComposedDistribution newDistribution(distributionCollection);
antecedent = RandomVector(newDistribution);
} // if p_conditional
Distribution conditioning(p_conditional->getConditioningDistribution());
conditioning.setParametersCollection(parametersCollection);
coll[i] = DeconditionedDistribution(p_conditional->getConditionedDistribution(), conditioning);
} // if conditional
} // i
antecedent = RandomVector(JointDistribution(coll));
} // if p_joint

const CompositeRandomVector composite(newFunction, antecedent);
const Scalar threshold = event_.getThreshold();
const ComparisonOperator op(event_.getOperator());
const ThresholdEvent event(composite, op, threshold);
const StandardEvent standardEvent(event);
const Scalar gsign = op(1.0, 2.0) ? 1.0 : -1.0;
Expand Down
6 changes: 3 additions & 3 deletions lib/src/SequentialMonteCarloRobustAlgorithm.cxx
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@
#include <openturns/PersistentObjectFactory.hxx>
#include <openturns/FixedExperiment.hxx>
#include <openturns/IdentityFunction.hxx>
#include <openturns/ComposedDistribution.hxx>
#include <openturns/JointDistribution.hxx>
#include <openturns/LHSExperiment.hxx>
#include <openturns/SpecFunc.hxx>
#include <openturns/Uniform.hxx>
Expand Down Expand Up @@ -143,10 +143,10 @@ void SequentialMonteCarloRobustAlgorithm::run()
if (!getProblem().hasBounds())
throw InvalidArgumentException(HERE) << "Cannot perform multi-start without bounds";

ComposedDistribution::DistributionCollection coll(dimension);
JointDistribution::DistributionCollection coll(dimension);
for (UnsignedInteger j = 0; j < dimension; ++ j)
coll[j] = Uniform(getProblem().getBounds().getLowerBound()[j], getProblem().getBounds().getUpperBound()[j]);
LHSExperiment initialExperiment(ComposedDistribution(coll), initialSearch_);
LHSExperiment initialExperiment(JointDistribution(coll), initialSearch_);
initialStartingPoints_ = initialExperiment.generate();

MultiStart multiStart(solver, initialStartingPoints_);
Expand Down
4 changes: 2 additions & 2 deletions lib/src/SubsetInverseSampling.cxx
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@
#include <openturns/KernelSmoothing.hxx>
#include <openturns/Normal.hxx>
#include <openturns/ChiSquare.hxx>
#include <openturns/ComposedDistribution.hxx>
#include <openturns/JointDistribution.hxx>
#include <openturns/SpecFunc.hxx>
#include <openturns/DistFunc.hxx>
#include <openturns/Uniform.hxx>
Expand Down Expand Up @@ -449,7 +449,7 @@ void SubsetInverseSampling::generatePoints(Scalar threshold)
{
UnsignedInteger maximumOuterSampling = getMaximumOuterSampling();
UnsignedInteger blockSize = getBlockSize();
Distribution randomWalk(ComposedDistribution(ComposedDistribution::DistributionCollection(dimension_, Uniform(-0.5*proposalRange_, 0.5*proposalRange_))));
Distribution randomWalk(JointDistribution(JointDistribution::DistributionCollection(dimension_, Uniform(-0.5*proposalRange_, 0.5*proposalRange_))));
UnsignedInteger N = currentPointSample_.getSize(); // total sample size
UnsignedInteger Nc = conditionalProbability_ * N; //number of seeds (also = maximumOuterSampling*blockSize)

Expand Down
21 changes: 14 additions & 7 deletions lib/test/t_InverseFORM_sphere.cxx
Original file line number Diff line number Diff line change
Expand Up @@ -24,16 +24,19 @@ int main()

Dirac mulog_eDist(L0);
mulog_eDist.setDescription(Description(1, "mulog_e"));
ComposedDistribution::DistributionCollection eColl; eColl.add(mulog_eDist); eColl.add(Dirac(0.1)); eColl.add(Dirac(0.));
ComposedDistribution eParams(eColl);
JointDistribution::DistributionCollection eColl; eColl.add(mulog_eDist); eColl.add(Dirac(0.1)); eColl.add(Dirac(0.));
JointDistribution eParams(eColl);

ComposedDistribution::DistributionCollection coll;
JointDistribution::DistributionCollection coll;
coll.add(Beta(0.117284, 0.117284, 2.9, 3.1));//R
#if OPENTURNS_VERSION >= 102400
DeconditionedDistribution eDist(LogNormal(L0, 0.1, 0.), eParams);
#else
ConditionalDistribution eDist(LogNormal(L0, 0.1, 0.), eParams);

#endif
coll.add(eDist);//e
coll.add(WeibullMin(3.16471, 9.21097, 0.0));//p
ComposedDistribution myDistribution(coll);
JointDistribution myDistribution(coll);

Point median(dim);
for(UnsignedInteger i = 0; i < dim; ++ i)
Expand Down Expand Up @@ -61,10 +64,14 @@ int main()

// FORM must yield the same probability on the limit state with parameter set to the optimum
eColl[0] = Dirac(result.getParameter()[0]);
eParams = ComposedDistribution(eColl);
eParams = JointDistribution(eColl);
#if OPENTURNS_VERSION >= 102400
eDist = DeconditionedDistribution(LogNormal(result.getParameter()[0], 0.1, 0.0), eParams);
#else
eDist = ConditionalDistribution(LogNormal(result.getParameter()[0], 0.1, 0.0), eParams);
#endif
coll[1] = eDist;
myDistribution = ComposedDistribution(coll);
myDistribution = JointDistribution(coll);
vect = RandomVector(myDistribution);
parametric.setParameter(result.getParameter());
output = CompositeRandomVector(parametric, vect);
Expand Down
4 changes: 2 additions & 2 deletions lib/test/t_InverseFORM_std.cxx
Original file line number Diff line number Diff line change
Expand Up @@ -21,13 +21,13 @@ int main()
const SymbolicFunction function(Description({"E", "F", "L", "b", "h"}), Description({"F*L^3/(48.*E*b*h^3/12.)"}));
ParametricFunction parametric(function, Indices({2}), Point({5.0}));

ComposedDistribution::DistributionCollection coll;
JointDistribution::DistributionCollection coll;
coll.add(LogNormalMuSigmaOverMu(30000., 0.12, 0.).getDistribution());//E
coll.add(LogNormalMuSigmaOverMu(0.1, 0.2, 0.).getDistribution());//F
coll.add(LogNormalMuSigmaOverMu(0.2, 0.05, 0.).getDistribution());//b
coll.add(LogNormalMuSigmaOverMu(0.4, 0.05, 0.).getDistribution());//h

const ComposedDistribution myDistribution(coll);
const JointDistribution myDistribution(coll);

Point median(dim);
for(UnsignedInteger i = 0; i < dim; ++ i)
Expand Down
4 changes: 2 additions & 2 deletions lib/test/t_MeasureEvaluation_std.cxx
Original file line number Diff line number Diff line change
Expand Up @@ -72,8 +72,8 @@ int main()
Collection <MeasureEvaluation> measures;
measures.add(MeanMeasure(f, thetaDist));
measures.add(VarianceMeasure(f, thetaDist));
measures.add(WorstCaseMeasure(f, ComposedDistribution(Collection<Distribution>(2, Uniform(-1.0, 4.0)))));
measures.add(WorstCaseMeasure(f, ComposedDistribution(Collection<Distribution>(2, Uniform(-1.0, 4.0))), false));
measures.add(WorstCaseMeasure(f, JointDistribution(Collection<Distribution>(2, Uniform(-1.0, 4.0)))));
measures.add(WorstCaseMeasure(f, JointDistribution(Collection<Distribution>(2, Uniform(-1.0, 4.0))), false));
measures.add(JointChanceMeasure(f, thetaDist, GreaterOrEqual(), 0.5));
measures.add(IndividualChanceMeasure(f, thetaDist, GreaterOrEqual(), Point(1, 0.5)));
measures.add(MeanStandardDeviationTradeoffMeasure(f, thetaDist, Point(1, 0.8)));
Expand Down
2 changes: 1 addition & 1 deletion python/test/sequential_mc.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,7 +178,7 @@ def solve(self):
newPoint = self.solver_.getResult().getOptimalPoint()
bestValue = self.solver_.getResult().getOptimalValue()[0]
else:
startingPoints = ot.LHSExperiment(ot.ComposedDistribution(
startingPoints = ot.LHSExperiment(ot.JointDistribution(
[ot.Uniform(self.bounds_.getLowerBound()[i], self.bounds_.getUpperBound()[i])
for i in range(self.bounds_.getDimension())]), self.initialSearch_).generate()
bestValue = ot.SpecFunc.MaxScalar
Expand Down
2 changes: 1 addition & 1 deletion python/test/t_InverseFORM_std.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
coll.append(ot.LogNormalMuSigmaOverMu(0.2, 0.05, 0.).getDistribution()) # b
coll.append(ot.LogNormalMuSigmaOverMu(0.4, 0.05, 0.).getDistribution()) # h

distribution = ot.ComposedDistribution(coll)
distribution = ot.JointDistribution(coll)

x0 = [coll[i].computeQuantile(0.5)[0] for i in range(len(coll))]

Expand Down
4 changes: 2 additions & 2 deletions python/test/t_MeasureEvaluation_std.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,9 +47,9 @@
measures = [otrobopt.MeanMeasure(f, thetaDist),
otrobopt.VarianceMeasure(f, thetaDist),
otrobopt.WorstCaseMeasure(
f, ot.ComposedDistribution([ot.Uniform(-1.0, 4.0)] * 2)),
f, ot.JointDistribution([ot.Uniform(-1.0, 4.0)] * 2)),
otrobopt.WorstCaseMeasure(
f, ot.ComposedDistribution(
f, ot.JointDistribution(
[ot.Uniform(-1.0, 4.0)] * 2), False),
otrobopt.JointChanceMeasure(
f, thetaDist, ot.GreaterOrEqual(), 0.95),
Expand Down
Loading