Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reduce h-cls config usage #205

Draft
wants to merge 2 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions model_api/cpp/models/src/classification_model.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -555,14 +555,17 @@ std::vector<std::unique_ptr<ClassificationResult>> ClassificationModel::inferBat
return clsResults;
}

HierarchicalConfig::HierarchicalConfig(const std::string& json_repr) {
HierarchicalConfig::HierarchicalConfig(const std::string& json_repr, const std::vector<std::string>& labels) {
nlohmann::json data = nlohmann::json::parse(json_repr);

num_multilabel_heads = data.at("cls_heads_info").at("num_multilabel_classes");
num_multiclass_heads = data.at("cls_heads_info").at("num_multiclass_heads");
num_single_label_classes = data.at("cls_heads_info").at("num_single_label_classes");

data.at("cls_heads_info").at("label_to_idx").get_to(label_to_idx);
int idx = 0;
for (const auto& lbl_name : labels) {
label_to_idx[lbl_name] = idx++;
}
data.at("cls_heads_info").at("all_groups").get_to(all_groups);
data.at("label_tree_edges").get_to(label_tree_edges);

Expand Down
3 changes: 3 additions & 0 deletions model_api/python/model_api/models/classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,9 @@ def __init__(self, inference_adapter, configuration=dict(), preload=False):
self.raise_error("Hierarchical classification config is empty.")
self.raw_scores_name = self.out_layer_names[0]
self.hierarchical_info = json.loads(self.hierarchical_config)
self.hierarchical_info["cls_heads_info"]["label_to_idx"] = {
label_name: i for i, label_name in enumerate(self.labels)
}

if self.hierarchical_postproc == "probabilistic":
self.labels_resolver = ProbabilisticLabelsResolver(
Expand Down
Loading