-
Notifications
You must be signed in to change notification settings - Fork 199
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e7fa974
commit 93be036
Showing
3 changed files
with
181 additions
and
75 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
# Copyright (C) 2023-2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import pytest | ||
|
||
model_ids = [ | ||
("TinyLlama/TinyLlama-1.1B-Chat-v1.0", "TinyLlama-1.1B-Chat-v1.0/pytorch/dldt/FP16/"), | ||
# ("meta-llama/Llama-2-7b-chat-hf", "Llama-2-7b-chat-hf/pytorch/dldt/FP16/"), | ||
# ("microsoft/phi-1_5", "phi-1_5/"), | ||
# ("google/gemma-2b-it", "gemma-2b-it/pytorch/dldt/FP16/"), | ||
] | ||
|
||
|
||
def run_hf_ov_genai_comparison(model_fixture, generation_config, prompt): | ||
model_id, path, tokenizer, model = model_fixture | ||
|
||
generation_config_hf = generation_config.copy() | ||
# in OpenVINO GenAI this parameter is called stop_criteria, | ||
# while in HF it's called early_stopping. | ||
# HF values True, False and "never" correspond to OV GenAI values "early", "heuristic" and "never" | ||
if generation_config_hf.get('stop_criteria'): | ||
generation_config_hf['early_stopping'] = stop_criteria_map()[generation_config_hf.pop('stop_criteria')] | ||
|
||
encoded_prompt = tokenizer.encode(prompt, return_tensors='pt', add_special_tokens=True) | ||
hf_encoded_output = model.generate(encoded_prompt, **generation_config_hf) | ||
hf_output = tokenizer.decode(hf_encoded_output[0, encoded_prompt.shape[1]:]) | ||
|
||
import sys | ||
# sys.path.append('../../src/python/openvino_genai/') | ||
sys.path.append('/home/epavel/devel/openvino.genai/src/python/openvino_genai/') | ||
import py_generate_pipeline as genai | ||
|
||
pipe = genai.LLMPipeline(path) | ||
ov_output = pipe.generate(prompt, **generation_config) | ||
|
||
if hf_output != ov_output: | ||
print(f'hf_output: {hf_output}') | ||
print(f'ov_output: {ov_output}') | ||
|
||
assert hf_output == ov_output | ||
|
||
|
||
def stop_criteria_map(): | ||
return {"never": "never", "early": True, "heuristic": False} | ||
|
||
|
||
@pytest.fixture(scope="module", params=model_ids) | ||
def model_fixture(request): | ||
model_id, path = request.param | ||
from transformers import AutoTokenizer, AutoModelForCausalLM | ||
tokenizer = AutoTokenizer.from_pretrained(model_id) | ||
model = AutoModelForCausalLM.from_pretrained(model_id) | ||
return model_id, path, tokenizer, model | ||
|
||
|
||
test_cases = [ | ||
(dict(max_new_tokens=20, do_sample=False), 'table is made of'), # generation_config, prompt | ||
(dict(num_beam_groups=3, num_beams=15, num_return_sequences=15, max_new_tokens=20, diversity_penalty=1.0), 'table is made of'), | ||
(dict(num_beam_groups=3, num_beams=15, num_return_sequences=15, max_new_tokens=20, diversity_penalty=1.0), 'Alan Turing was a'), | ||
(dict(num_beam_groups=3, num_beams=15, num_return_sequences=15, max_new_tokens=30, diversity_penalty=1.0), 'Alan Turing was a'), | ||
(dict(num_beam_groups=2, num_beams=8, num_return_sequences=8, max_new_tokens=20, diversity_penalty=1.0), 'table is made of'), | ||
(dict(num_beam_groups=2, num_beams=8, num_return_sequences=8, max_new_tokens=20, diversity_penalty=1.0), 'The Sun is yellow because'), | ||
(dict(num_beam_groups=2, num_beams=8, num_return_sequences=8, max_new_tokens=20, diversity_penalty=1.5), 'The Sun is yellow because'), | ||
] | ||
@pytest.mark.parametrize("generation_config,prompt", test_cases) | ||
def test_greedy_decoding(model_fixture, generation_config, prompt): | ||
run_hf_ov_genai_comparison(model_fixture, generation_config, prompt) | ||
|
||
|
||
prompts = ['The Sun is yellow because'] #, 'Alan Turing was a', 'table is made of'] | ||
@pytest.mark.parametrize("num_beam_groups", [2, 3]) | ||
@pytest.mark.parametrize("group_size", [5, 3]) | ||
@pytest.mark.parametrize("max_new_tokens", [20, 15]) | ||
@pytest.mark.parametrize("diversity_penalty", [1.0, 1.5]) | ||
@pytest.mark.parametrize("prompt", prompts) | ||
def test_beam_search_decoding(model_fixture, num_beam_groups, group_size, | ||
max_new_tokens, diversity_penalty, prompt): | ||
generation_config = dict( | ||
num_beam_groups=num_beam_groups, | ||
num_beams=num_beam_groups * group_size, | ||
diversity_penalty=diversity_penalty, | ||
num_return_sequences=num_beam_groups * group_size, | ||
max_new_tokens=max_new_tokens, | ||
) | ||
run_hf_ov_genai_comparison(model_fixture, generation_config, prompt) | ||
|
||
|
||
@pytest.mark.parametrize("stop_criteria", ["never", "early", "heuristic"]) | ||
@pytest.mark.parametrize("prompt", prompts) | ||
@pytest.mark.parametrize("max_new_tokens", [20, 15]) | ||
def test_greedy_decoding(model_fixture, stop_criteria, prompt, max_new_tokens): | ||
|
||
generation_config = dict( | ||
num_beam_groups=2, | ||
num_beams=2 * 3, | ||
diversity_penalty=1.0, | ||
num_return_sequences=2 * 3, | ||
max_new_tokens=max_new_tokens, | ||
stop_criteria=stop_criteria, | ||
) | ||
run_hf_ov_genai_comparison(model_fixture, generation_config, prompt) | ||
|
This file was deleted.
Oops, something went wrong.