-
Notifications
You must be signed in to change notification settings - Fork 2.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[PT FE] Improve support for complex data type (#28482)
### Details: - *Remove transformations for FFT* - *Use `ComplexTypeMark` to provide information about a complex type* ### Tickets: - *CVS-159375* --------- Signed-off-by: Maxim Vafin <[email protected]> Co-authored-by: Roman Kazantsev <[email protected]>
- Loading branch information
Showing
18 changed files
with
497 additions
and
450 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
// Copyright (C) 2018-2025 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
// | ||
|
||
#include "openvino/frontend/complex_type_mark.hpp" | ||
#include "openvino/frontend/pytorch/node_context.hpp" | ||
#include "openvino/op/concat.hpp" | ||
#include "openvino/op/split.hpp" | ||
#include "openvino/op/squeeze.hpp" | ||
#include "openvino/op/unsqueeze.hpp" | ||
#include "utils.hpp" | ||
|
||
namespace ov { | ||
namespace frontend { | ||
namespace pytorch { | ||
namespace op { | ||
|
||
using namespace ov::op; | ||
|
||
OutputVector translate_complex(const NodeContext& context) { | ||
num_inputs_check(context, 2, 2); | ||
auto real = context.get_input(0); | ||
auto imag = context.get_input(1); | ||
|
||
auto const_neg_1 = context.mark_node(v0::Constant::create(element::i32, Shape{}, {-1})); | ||
real = context.mark_node(std::make_shared<v0::Unsqueeze>(real, const_neg_1)); | ||
imag = context.mark_node(std::make_shared<v0::Unsqueeze>(imag, const_neg_1)); | ||
|
||
auto complex = context.mark_node(std::make_shared<v0::Concat>(OutputVector{real, imag}, -1)); | ||
|
||
return {context.mark_node(std::make_shared<ComplexTypeMark>(complex, complex->get_element_type()))}; | ||
}; | ||
|
||
OutputVector translate_imag(const NodeContext& context) { | ||
num_inputs_check(context, 1, 1, true); | ||
auto complex = context.get_input(0); | ||
|
||
auto complex_type_mark = as_type_ptr<ComplexTypeMark>(complex.get_node_shared_ptr()); | ||
PYTORCH_OP_CONVERSION_CHECK(complex_type_mark, "aten::imag operation expects complex type tensor on input."); | ||
|
||
complex = complex_type_mark->input_value(0); | ||
auto axis = context.mark_node(v0::Constant::create(element::i32, Shape{}, {-1})); | ||
auto imag = context.mark_node(std::make_shared<v1::Split>(complex, axis, 2))->output(1); | ||
|
||
auto const_neg_1 = context.mark_node(v0::Constant::create(element::i32, Shape{}, {-1})); | ||
return {context.mark_node(std::make_shared<v0::Squeeze>(imag, const_neg_1))}; | ||
}; | ||
|
||
OutputVector translate_real(const NodeContext& context) { | ||
num_inputs_check(context, 1, 1, true); | ||
auto complex = context.get_input(0); | ||
|
||
auto complex_type_mark = as_type_ptr<ComplexTypeMark>(complex.get_node_shared_ptr()); | ||
PYTORCH_OP_CONVERSION_CHECK(complex_type_mark, "aten::real operation expects complex type tensor on input."); | ||
|
||
complex = complex_type_mark->input_value(0); | ||
auto axis = context.mark_node(v0::Constant::create(element::i32, Shape{}, {-1})); | ||
auto real = context.mark_node(std::make_shared<v1::Split>(complex, axis, 2))->output(0); | ||
|
||
auto const_neg_1 = context.mark_node(v0::Constant::create(element::i32, Shape{}, {-1})); | ||
return {context.mark_node(std::make_shared<v0::Squeeze>(real, const_neg_1))}; | ||
}; | ||
|
||
OutputVector translate_view_as_real(const NodeContext& context) { | ||
num_inputs_check(context, 1, 1, true); | ||
auto complex = context.get_input(0); | ||
|
||
auto complex_type_mark = as_type_ptr<ComplexTypeMark>(complex.get_node_shared_ptr()); | ||
PYTORCH_OP_CONVERSION_CHECK(complex_type_mark, "aten::real operation expects complex type tensor on input."); | ||
|
||
return {complex_type_mark->input_value(0)}; | ||
}; | ||
|
||
OutputVector translate_view_as_complex(const NodeContext& context) { | ||
num_inputs_check(context, 1, 1); | ||
auto complex = context.get_input(0); | ||
|
||
return {context.mark_node(std::make_shared<ComplexTypeMark>(complex, complex.get_element_type()))}; | ||
}; | ||
|
||
} // namespace op | ||
} // namespace pytorch | ||
} // namespace frontend | ||
} // namespace ov |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,208 @@ | ||
// Copyright (C) 2018-2025 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
// | ||
|
||
#include "openvino/frontend/complex_type_mark.hpp" | ||
#include "openvino/frontend/pytorch/node_context.hpp" | ||
#include "openvino/op/divide.hpp" | ||
#include "openvino/op/equal.hpp" | ||
#include "openvino/op/gather.hpp" | ||
#include "openvino/op/irdft.hpp" | ||
#include "openvino/op/multiply.hpp" | ||
#include "openvino/op/range.hpp" | ||
#include "openvino/op/rdft.hpp" | ||
#include "openvino/op/reduce_prod.hpp" | ||
#include "openvino/op/reshape.hpp" | ||
#include "openvino/op/scatter_update.hpp" | ||
#include "openvino/op/select.hpp" | ||
#include "openvino/op/shape_of.hpp" | ||
#include "openvino/op/sqrt.hpp" | ||
#include "openvino/op/squeeze.hpp" | ||
#include "openvino/op/subtract.hpp" | ||
#include "utils.hpp" | ||
|
||
namespace ov { | ||
namespace frontend { | ||
namespace pytorch { | ||
namespace op { | ||
|
||
using namespace ov::op; | ||
|
||
OutputVector translate_fft_rfftn(const NodeContext& context) { | ||
// aten::fft_rfftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor | ||
num_inputs_check(context, 1, 4); | ||
auto input = context.get_input(0); | ||
|
||
auto const_neg_1 = context.mark_node(v0::Constant::create(element::i32, Shape{}, {-1})); | ||
auto const_0 = context.mark_node(v0::Constant::create(element::i32, Shape{}, {0})); | ||
auto const_1 = context.mark_node(v0::Constant::create(element::i32, Shape{}, {1})); | ||
|
||
Output<Node> input_shape; | ||
Output<Node> input_rank_scalar; | ||
std::tie(input_shape, input_rank_scalar) = get_shape_rank(context, input, true); | ||
|
||
Output<Node> raw_s; | ||
// Inputs can be either none or List. Check whether input values should be used or should be set to default values. | ||
if (!context.input_is_none(1)) { | ||
// s is provided, load from input. | ||
raw_s = get_input_concat_if_list(context, 1); | ||
raw_s = context.mark_node(std::make_shared<v0::Convert>(raw_s, element::i32)); | ||
} | ||
Output<Node> dim; | ||
// Handle dim parameter containing vector of integers indicating dimensions to be transformed. | ||
if (!context.input_is_none(2)) { | ||
// dim is provided, load from input. | ||
dim = get_input_concat_if_list(context, 2); | ||
dim = context.mark_node(std::make_shared<v0::Convert>(dim, element::i32)); | ||
} else if (!context.input_is_none(1)) { | ||
// If dim is default and s is provided, use last s_len dimensions where s_len is length of s. | ||
auto s_len = context.mark_node(std::make_shared<v3::ShapeOf>(raw_s, element::i32)); | ||
auto slice_start = context.mark_node(std::make_shared<v1::Subtract>(input_rank_scalar, s_len)); | ||
auto slice_start_scalar = context.mark_node(std::make_shared<v0::Squeeze>(slice_start)); | ||
dim = context.mark_node( | ||
std::make_shared<v4::Range>(slice_start_scalar, input_rank_scalar, const_1, element::i32)); | ||
} else { | ||
// Dim and s are set to default, use all of dimensions. | ||
dim = context.mark_node(std::make_shared<v4::Range>(const_0, input_rank_scalar, const_1, element::i32)); | ||
} | ||
|
||
Output<Node> s; | ||
if (context.input_is_none(1)) { | ||
// Value for s was set to default, use full size for all dimensions. | ||
s = context.mark_node(std::make_shared<v8::Gather>(input_shape, dim, const_0)); | ||
} else { | ||
// Values for s were provided. Replace -1 values with default full size in given dimension. | ||
auto full_s_cond = context.mark_node(std::make_shared<v1::Equal>(raw_s, const_neg_1)); | ||
auto full_s_values = context.mark_node(std::make_shared<v8::Gather>(input_shape, dim, const_0)); | ||
s = context.mark_node(std::make_shared<v1::Select>(full_s_cond, full_s_values, raw_s)); | ||
} | ||
|
||
// Handle norm parameter indicating normalization mode to use. Defaults to "backward". | ||
std::string norm = "backward"; | ||
if (!context.input_is_none(3)) { | ||
norm = context.const_input<std::string>(3); | ||
} | ||
|
||
auto rdft = context.mark_node(std::make_shared<v9::RDFT>(input, dim, s)); | ||
|
||
// Apply normalizations | ||
auto n_int = context.mark_node(std::make_shared<v1::ReduceProd>(s, const_0)); | ||
auto n = context.mark_node(std::make_shared<v1::ConvertLike>(n_int, rdft)); | ||
Output<Node> normalized_rfftn; | ||
if (norm == "forward") { | ||
// Normalize by 1/n | ||
normalized_rfftn = context.mark_node(std::make_shared<v1::Divide>(rdft, n)); | ||
} else if (norm == "backward") { | ||
// No normalization | ||
normalized_rfftn = rdft; | ||
} else if (norm == "ortho") { | ||
// Normalize by 1/sqrt(n) | ||
auto sqrt_n = context.mark_node(std::make_shared<v0::Sqrt>(n)); | ||
normalized_rfftn = context.mark_node(std::make_shared<v1::Divide>(rdft, sqrt_n)); | ||
} else { | ||
FRONT_END_THROW( | ||
"aten::fft_rfftn: unrecognized normalization mode. Only forward, backward and ortho are supported."); | ||
} | ||
|
||
return {std::make_shared<ComplexTypeMark>(normalized_rfftn, normalized_rfftn.get_element_type())}; | ||
} | ||
|
||
OutputVector translate_fft_irfftn(const NodeContext& context) { | ||
// aten::fft_irfftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor | ||
num_inputs_check(context, 1, 4, true); | ||
auto input = context.get_input(0); | ||
|
||
auto complex_type_mark = as_type_ptr<ComplexTypeMark>(input.get_node_shared_ptr()); | ||
PYTORCH_OP_CONVERSION_CHECK(complex_type_mark, "aten::fft_irfftn operation expects complex type tensor on input."); | ||
input = complex_type_mark->input_value(0); | ||
|
||
auto const_neg_1 = context.mark_node(v0::Constant::create(element::i32, Shape{1}, {-1})); | ||
auto const_0 = context.mark_node(v0::Constant::create(element::i32, Shape{1}, {0})); | ||
auto const_scalar_0 = context.mark_node(v0::Constant::create(element::i32, Shape{}, {0})); | ||
auto const_1 = context.mark_node(v0::Constant::create(element::i32, Shape{1}, {1})); | ||
auto const_scalar_1 = context.mark_node(v0::Constant::create(element::i32, Shape{}, {1})); | ||
auto const_2 = context.mark_node(v0::Constant::create(element::i32, Shape{1}, {2})); | ||
|
||
// Input shape of complex number (excluding dimension created by concatenation of real and imag) | ||
auto complex_input_shape = get_complex_shape(context, input); | ||
auto input_rank = context.mark_node(std::make_shared<v3::ShapeOf>(complex_input_shape, element::i32)); | ||
auto input_rank_scalar = context.mark_node(std::make_shared<v0::Squeeze>(input_rank)); | ||
|
||
Output<Node> raw_s; | ||
// Inputs can be either none or List. Check whether input values should be used or should be set to default values. | ||
if (!context.input_is_none(1)) { | ||
// s is provided, load from input. | ||
raw_s = get_input_concat_if_list(context, 1); | ||
raw_s = context.mark_node(std::make_shared<v0::Convert>(raw_s, element::i32)); | ||
} | ||
|
||
// Handle dim parameter containing vector of integers indicating dimensions to be transformed. | ||
Output<Node> dim; | ||
if (!context.input_is_none(2)) { | ||
// Dim values is provided, load from input. | ||
dim = get_input_concat_if_list(context, 2); | ||
dim = context.mark_node(std::make_shared<v0::Convert>(dim, element::i32)); | ||
} else if (!context.input_is_none(1)) { | ||
// If dim is default and s is provided, use last s_len dimensions where s_len is length of s. | ||
auto s_len = context.mark_node(std::make_shared<v3::ShapeOf>(raw_s, element::i32)); | ||
auto range_start = context.mark_node(std::make_shared<v1::Subtract>(input_rank, s_len)); | ||
auto range_start_scalar = context.mark_node(std::make_shared<v0::Squeeze>(range_start)); | ||
dim = context.mark_node( | ||
std::make_shared<v4::Range>(range_start_scalar, input_rank_scalar, const_scalar_1, element::i32)); | ||
} else { | ||
// Dim and s are set to default, use all of dimensions. | ||
dim = context.mark_node( | ||
std::make_shared<v4::Range>(const_scalar_0, input_rank_scalar, const_scalar_1, element::i32)); | ||
} | ||
|
||
// Calculate default s values. Use full available size except last element, which is set to even value in last | ||
// dimension: s[-1] = 2 * (complex_input_shape[dim[-1]]) | ||
auto default_s_raw = context.mark_node(std::make_shared<v8::Gather>(complex_input_shape, dim, const_0)); | ||
auto last_s = context.mark_node(std::make_shared<v8::Gather>(default_s_raw, const_neg_1, const_0)); | ||
auto last_s_m_1 = context.mark_node(std::make_shared<v1::Subtract>(last_s, const_1)); | ||
auto s_upd = context.mark_node(std::make_shared<v1::Multiply>(last_s_m_1, const_2)); | ||
auto s_shape = context.mark_node(std::make_shared<v3::ShapeOf>(default_s_raw, element::i32)); | ||
auto last_s_idx = context.mark_node(std::make_shared<v1::Subtract>(s_shape, const_1)); | ||
auto default_s = context.mark_node(std::make_shared<v3::ScatterUpdate>(default_s_raw, last_s_idx, s_upd, const_0)); | ||
|
||
// Handle s parameter containing vector of intigers indicating signal sizes for dimensions. | ||
Output<Node> s; | ||
if (!context.input_is_none(1)) { | ||
// Values for s were provided. Replace -1 values with default full size in given dimension. | ||
auto full_s_cond = context.mark_node(std::make_shared<v1::Equal>(raw_s, const_neg_1)); | ||
s = context.mark_node(std::make_shared<v1::Select>(full_s_cond, default_s, raw_s)); | ||
} else { | ||
// Value for s was set to default. | ||
s = default_s; | ||
} | ||
|
||
// Handle norm parameter indicating normalization mode to use. Defaults to "backward". | ||
std::string norm = "backward"; | ||
if (!context.input_is_none(3)) { | ||
norm = context.const_input<std::string>(3); | ||
} | ||
|
||
auto irdft = context.mark_node(std::make_shared<v9::IRDFT>(input, dim, s)); | ||
|
||
// Apply normalizations. | ||
auto n_int = context.mark_node(std::make_shared<v1::ReduceProd>(s, const_0)); | ||
auto n = context.mark_node(std::make_shared<v1::ConvertLike>(n_int, irdft)); | ||
Output<Node> normalized_irfftn; | ||
if (norm == "forward") { | ||
normalized_irfftn = context.mark_node(std::make_shared<v1::Multiply>(irdft, n)); | ||
} else if (norm == "backward") { | ||
normalized_irfftn = irdft; | ||
} else if (norm == "ortho") { | ||
auto sqrt_n = context.mark_node(std::make_shared<v0::Sqrt>(n)); | ||
normalized_irfftn = context.mark_node(std::make_shared<v1::Multiply>(irdft, sqrt_n)); | ||
} else { | ||
FRONT_END_THROW( | ||
"aten::fft_irfftn: unrecognized normalization mode. Only forward, backward and ortho are supported."); | ||
} | ||
return {normalized_irfftn}; | ||
} | ||
|
||
} // namespace op | ||
} // namespace pytorch | ||
} // namespace frontend | ||
} // namespace ov |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.