Skip to content

Commit

Permalink
[DOCS] menu restructuring 2025 pass 4 mstr (#28738)
Browse files Browse the repository at this point in the history
Co-authored-by: sgolebiewski-intel <[email protected]>
  • Loading branch information
kblaszczak-intel and sgolebiewski-intel authored Jan 30, 2025
1 parent 641a3da commit 0e20dc4
Show file tree
Hide file tree
Showing 137 changed files with 3,700 additions and 3,698 deletions.
2 changes: 1 addition & 1 deletion docs/articles_en/about-openvino.rst
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ OpenVINO Ecosystem
Along with the primary components of model optimization and runtime, the toolkit also includes:

* `Neural Network Compression Framework (NNCF) <https://github.com/openvinotoolkit/nncf>`__ - a tool for enhanced OpenVINO™ inference to get performance boost with minimal accuracy drop.
* :doc:`Openvino Notebooks <learn-openvino/interactive-tutorials-python>`- Jupyter Python notebook, which demonstrate key features of the toolkit.
* :doc:`Openvino Notebooks <get-started/learn-openvino/interactive-tutorials-python>`- Jupyter Python notebook, which demonstrate key features of the toolkit.
* `OpenVINO Model Server <https://github.com/openvinotoolkit/model_server>`__ - a server that enables scalability via a serving microservice.
* :doc:`OpenVINO Training Extensions <documentation/openvino-ecosystem/openvino-training-extensions>` – a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference.
* :doc:`Dataset Management Framework (Datumaro) <documentation/openvino-ecosystem/datumaro>` - a tool to build, transform, and analyze datasets.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,7 @@ General considerations
When comparing OpenVINO Runtime performance with the framework or reference code,
make sure that both versions are as similar as possible:

* Wrap the exact inference execution (for examples, see :doc:`Benchmark app <../../learn-openvino/openvino-samples/benchmark-tool>`).
* Wrap the exact inference execution (for examples, see :doc:`Benchmark app <../../get-started/learn-openvino/openvino-samples/benchmark-tool>`).
* Do not include model loading time.
* Ensure that the inputs are identical for OpenVINO Runtime and the framework. For example, watch out for random values that can be used to populate the inputs.
* In situations when any user-side pre-processing should be tracked separately, consider :doc:`image pre-processing and conversion <../../openvino-workflow/running-inference/optimize-inference/optimize-preprocessing>`.
Expand All @@ -149,7 +149,7 @@ OpenVINO benchmarking (general)
+++++++++++++++++++++++++++++++

The default way of measuring OpenVINO performance is running a piece of code, referred to as
:doc:`the benchmark tool <../../learn-openvino/openvino-samples/benchmark-tool>`.
:doc:`the benchmark tool <../../get-started/learn-openvino/openvino-samples/benchmark-tool>`.
For Python, it is part of the OpenVINO Runtime installation, while for C++, it is available as
a code sample.

Expand Down Expand Up @@ -186,7 +186,7 @@ Internal Inference Performance Counters and Execution Graphs

More detailed insights into inference performance breakdown can be achieved with device-specific
performance counters and/or execution graphs.
Both :doc:`C++ and Python <../../learn-openvino/openvino-samples/benchmark-tool>`
Both :doc:`C++ and Python <../../get-started/learn-openvino/openvino-samples/benchmark-tool>`
versions of the benchmark_app support a ``-pc`` command-line parameter that outputs an internal
execution breakdown.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ Performance Information F.A.Q.

All of the performance benchmarks on traditional network models are generated using the
open-source tool within the Intel® Distribution of OpenVINO™ toolkit
called :doc:`benchmark_app <../../learn-openvino/openvino-samples/benchmark-tool>`.
called :doc:`benchmark_app <../../get-started/learn-openvino/openvino-samples/benchmark-tool>`.

For diffusers (Stable-Diffusion) and foundational models (aka LLMs) please use the OpenVINO GenAI
opensource repo `OpenVINO GenAI tools/llm_bench <https://github.com/openvinotoolkit/openvino.genai/tree/master/tools/llm_bench>`__
Expand Down
4 changes: 2 additions & 2 deletions docs/articles_en/documentation/openvino-extensibility.rst
Original file line number Diff line number Diff line change
Expand Up @@ -187,6 +187,6 @@ See Also
########

* :doc:`OpenVINO Transformations <openvino-extensibility/transformation-api>`
* :doc:`Using OpenVINO Runtime Samples <../learn-openvino/openvino-samples>`
* :doc:`Hello Shape Infer SSD sample <../learn-openvino/openvino-samples/hello-reshape-ssd>`
* :doc:`Using OpenVINO Runtime Samples <../get-started/learn-openvino/openvino-samples>`
* :doc:`Hello Shape Infer SSD sample <../get-started/learn-openvino/openvino-samples/hello-reshape-ssd>`

Original file line number Diff line number Diff line change
Expand Up @@ -322,7 +322,7 @@ redistributed in the "Saved model" format, converted to a frozen graph using the
Inference
+++++++++

The simplest way to infer the model and collect performance counters is :doc:`Benchmark Application <../../../../learn-openvino/openvino-samples/benchmark-tool>`.
The simplest way to infer the model and collect performance counters is :doc:`Benchmark Application <../../../../get-started/learn-openvino/openvino-samples/benchmark-tool>`.

.. code-block:: sh
Expand Down
2 changes: 1 addition & 1 deletion docs/articles_en/documentation/openvino-security.rst
Original file line number Diff line number Diff line change
Expand Up @@ -86,4 +86,4 @@ Additional Resources
- Intel® Distribution of OpenVINO™ toolkit `home page <https://software.intel.com/en-us/openvino-toolkit>`__.
- :doc:`Convert a Model <../openvino-workflow/model-preparation/convert-model-to-ir>`.
- :doc:`OpenVINO™ Runtime User Guide <../openvino-workflow/running-inference>`.
- For more information on Sample Applications, see the :doc:`OpenVINO Samples Overview <../learn-openvino/openvino-samples>`
- For more information on Sample Applications, see the :doc:`OpenVINO Samples Overview <../get-started/learn-openvino/openvino-samples>`
7 changes: 4 additions & 3 deletions docs/articles_en/get-started.rst
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ GET STARTED
:hidden:

Install OpenVINO <get-started/install-openvino>
Learn OpenVINO <get-started/learn-openvino>
System Requirements <./about-openvino/release-notes-openvino/system-requirements>


Expand Down Expand Up @@ -67,7 +68,7 @@ Learn the basics of working with models and inference in OpenVINO. Begin with
Interactive Tutorials - Jupyter Notebooks
-----------------------------------------

Start with :doc:`interactive Python <learn-openvino/interactive-tutorials-python>` that show the basics of model inference, the OpenVINO API, how to convert models to OpenVINO format, and more.
Start with :doc:`interactive Python <get-started/learn-openvino/interactive-tutorials-python>` that show the basics of model inference, the OpenVINO API, how to convert models to OpenVINO format, and more.

* `Hello Image Classification <notebooks/hello-world-with-output.html>`__ - Load an image classification model in OpenVINO and use it to apply a label to an image
* `OpenVINO Runtime API Tutorial <notebooks/openvino-api-with-output.html>`__ - Learn the basic Python API for working with models in OpenVINO
Expand All @@ -79,7 +80,7 @@ Start with :doc:`interactive Python <learn-openvino/interactive-tutorials-python
OpenVINO Code Samples
---------------------

View :doc:`sample code <learn-openvino/openvino-samples>` for various C++ and Python applications that can be used as a starting point for your own application. For C++ developers, step through the :doc:`Get Started with C++ Samples <learn-openvino/openvino-samples/get-started-demos>` to learn how to build and run an image classification program that uses OpenVINO’s C++ API.
View :doc:`sample code <get-started/learn-openvino/openvino-samples>` for various C++ and Python applications that can be used as a starting point for your own application. For C++ developers, step through the :doc:`Get Started with C++ Samples <get-started/learn-openvino/openvino-samples/get-started-demos>` to learn how to build and run an image classification program that uses OpenVINO’s C++ API.

.. _integrate-openvino:

Expand Down Expand Up @@ -120,7 +121,7 @@ Pipeline and model configuration features in OpenVINO Runtime allow you to easil
* :doc:`Automatic Batching <openvino-workflow/running-inference/inference-devices-and-modes/automatic-batching>` performs on-the-fly grouping of inference requests to maximize utilization of the target hardware’s memory and processing cores.
* :doc:`Performance Hints <openvino-workflow/running-inference/optimize-inference/high-level-performance-hints>` automatically adjust runtime parameters to prioritize for low latency or high throughput
* :doc:`Dynamic Shapes <openvino-workflow/running-inference/dynamic-shapes>` reshapes models to accept arbitrarily-sized inputs, increasing flexibility for applications that encounter different data shapes
* :doc:`Benchmark Tool <learn-openvino/openvino-samples/benchmark-tool>` characterizes model performance in various hardware and pipeline configurations
* :doc:`Benchmark Tool <get-started/learn-openvino/openvino-samples/benchmark-tool>` characterizes model performance in various hardware and pipeline configurations

.. _additional-about-openvino/additional-resources:

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ Additional Configurations
For GPU <configurations/configurations-intel-gpu>
For NPU <configurations/configurations-intel-npu>
GenAI Dependencies <configurations/genai-dependencies>
Troubleshooting Guide for OpenVINO™ Installation & Configuration <troubleshooting-install-config.html>

For certain use cases, you may need to install additional software, to benefit from the full
potential of OpenVINO™. Check the following list for components used in your workflow:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,7 @@ need to install additional components. Check the
to see if your case needs any of them.

With the APT distribution, you can build OpenVINO sample files, as explained in the
:doc:`guide for OpenVINO sample applications <../../../learn-openvino/openvino-samples>`.
:doc:`guide for OpenVINO sample applications <../../../get-started/learn-openvino/openvino-samples>`.
For C++ and C, just run the ``build_samples.sh`` script:

.. tab-set::
Expand Down Expand Up @@ -215,23 +215,23 @@ What's Next?
Now that you've installed OpenVINO Runtime, you're ready to run your own machine learning applications!
Learn more about how to integrate a model in OpenVINO applications by trying out the following tutorials:

* Try the :doc:`C++ Quick Start Example <../../../learn-openvino/openvino-samples/get-started-demos>` for step-by-step
* Try the :doc:`C++ Quick Start Example <../../../get-started/learn-openvino/openvino-samples/get-started-demos>` for step-by-step
instructions on building and running a basic image classification C++ application.

.. image:: https://user-images.githubusercontent.com/36741649/127170593-86976dc3-e5e4-40be-b0a6-206379cd7df5.jpg
:width: 400

* Visit the :ref:`Samples <code samples>` page for other C++ example applications to get you started with OpenVINO, such as:

* :doc:`Basic object detection with the Hello Reshape SSD C++ sample <../../../learn-openvino/openvino-samples/hello-reshape-ssd>`
* :doc:`Object classification sample <../../../learn-openvino/openvino-samples/hello-classification>`
* :doc:`Basic object detection with the Hello Reshape SSD C++ sample <../../../get-started/learn-openvino/openvino-samples/hello-reshape-ssd>`
* :doc:`Object classification sample <../../../get-started/learn-openvino/openvino-samples/hello-classification>`

You can also try the following:

* Learn more about :doc:`OpenVINO Workflow <../../../openvino-workflow>`.
* To prepare your models for working with OpenVINO, see :doc:`Model Preparation <../../../openvino-workflow/model-preparation>`.
* See pre-trained deep learning models on `Hugging Face <https://huggingface.co/OpenVINO>`__
* Learn more about :doc:`Inference with OpenVINO Runtime <../../../openvino-workflow/running-inference>`.
* See sample applications in :doc:`OpenVINO toolkit Samples Overview <../../../learn-openvino/openvino-samples>`.
* See sample applications in :doc:`OpenVINO toolkit Samples Overview <../../../get-started/learn-openvino/openvino-samples>`.
* Take a glance at the OpenVINO `product home page <https://software.intel.com/en-us/openvino-toolkit>`__ .

Original file line number Diff line number Diff line change
Expand Up @@ -224,7 +224,7 @@ Learn more about how to integrate a model in OpenVINO applications by trying out
.. image:: https://user-images.githubusercontent.com/15709723/127752390-f6aa371f-31b5-4846-84b9-18dd4f662406.gif
:width: 400

Visit the :doc:`Tutorials <../../../learn-openvino/interactive-tutorials-python>` page for more Jupyter Notebooks to get you started with OpenVINO, such as:
Visit the :doc:`Tutorials <../../../get-started/learn-openvino/interactive-tutorials-python>` page for more Jupyter Notebooks to get you started with OpenVINO, such as:

* `OpenVINO Python API Tutorial <../../notebooks/openvino-api-with-output.html>`__
* `Basic image classification program with Hello Image Classification <../../notebooks/hello-world-with-output.html>`__
Expand All @@ -234,16 +234,16 @@ Learn more about how to integrate a model in OpenVINO applications by trying out
.. tab-item:: Get started with C++
:sync: get-started-cpp

Try the :doc:`C++ Quick Start Example <../../../learn-openvino/openvino-samples/get-started-demos>` for step-by-step instructions
Try the :doc:`C++ Quick Start Example <../../../get-started/learn-openvino/openvino-samples/get-started-demos>` for step-by-step instructions
on building and running a basic image classification C++ application.

.. image:: https://user-images.githubusercontent.com/36741649/127170593-86976dc3-e5e4-40be-b0a6-206379cd7df5.jpg
:width: 400

Visit the :doc:`Samples <../../../learn-openvino/openvino-samples>` page for other C++ example applications to get you started with OpenVINO, such as:
Visit the :doc:`Samples <../../../get-started/learn-openvino/openvino-samples>` page for other C++ example applications to get you started with OpenVINO, such as:

* :doc:`Basic object detection with the Hello Reshape SSD C++ sample <../../../learn-openvino/openvino-samples/hello-reshape-ssd>`
* :doc:`Object classification sample <../../../learn-openvino/openvino-samples/hello-classification>`
* :doc:`Basic object detection with the Hello Reshape SSD C++ sample <../../../get-started/learn-openvino/openvino-samples/hello-reshape-ssd>`
* :doc:`Object classification sample <../../../get-started/learn-openvino/openvino-samples/hello-classification>`



Expand Down Expand Up @@ -276,5 +276,5 @@ Additional Resources
* :doc:`Troubleshooting Guide for OpenVINO Installation & Configuration <./configurations/troubleshooting-install-config>`
* Converting models for use with OpenVINO™: :doc:`Convert a Model <../../../openvino-workflow/model-preparation>`
* Writing your own OpenVINO™ applications: :doc:`OpenVINO™ Runtime User Guide <../../../openvino-workflow/running-inference>`
* Sample applications: :doc:`OpenVINO™ Toolkit Samples Overview <../../../learn-openvino/openvino-samples>`
* Sample applications: :doc:`OpenVINO™ Toolkit Samples Overview <../../../get-started/learn-openvino/openvino-samples>`
* Pre-trained deep learning models on `Hugging Face <https://huggingface.co/OpenVINO>`__.
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,7 @@ Now that you've installed OpenVINO Runtime, you're ready to run your own machine
.. image:: https://user-images.githubusercontent.com/15709723/127752390-f6aa371f-31b5-4846-84b9-18dd4f662406.gif
:width: 400

Visit the :doc:`Tutorials <../../../learn-openvino/interactive-tutorials-python>` page for more Jupyter Notebooks to get you started with OpenVINO, such as:
Visit the :doc:`Tutorials <../../../get-started/learn-openvino/interactive-tutorials-python>` page for more Jupyter Notebooks to get you started with OpenVINO, such as:

* `OpenVINO Python API Tutorial <../../notebooks/openvino-api-with-output.html>`__
* `Basic image classification program with Hello Image Classification <../../notebooks/hello-world-with-output.html>`__
Expand All @@ -154,15 +154,15 @@ Now that you've installed OpenVINO Runtime, you're ready to run your own machine
.. tab-item:: Get started with C++
:sync: get-started-cpp

Try the :doc:`C++ Quick Start Example <../../../learn-openvino/openvino-samples/get-started-demos>` for step-by-step instructions on building and running a basic image classification C++ application.
Try the :doc:`C++ Quick Start Example <../../../get-started/learn-openvino/openvino-samples/get-started-demos>` for step-by-step instructions on building and running a basic image classification C++ application.

.. image:: https://user-images.githubusercontent.com/36741649/127170593-86976dc3-e5e4-40be-b0a6-206379cd7df5.jpg
:width: 400

Visit the :ref:`Samples <code samples>` page for other C++ example applications to get you started with OpenVINO, such as:

* :doc:`Basic object detection with the Hello Reshape SSD C++ sample <../../../learn-openvino/openvino-samples/hello-reshape-ssd>`
* :doc:`Object classification sample <../../../learn-openvino/openvino-samples/hello-classification>`
* :doc:`Basic object detection with the Hello Reshape SSD C++ sample <../../../get-started/learn-openvino/openvino-samples/hello-reshape-ssd>`
* :doc:`Object classification sample <../../../get-started/learn-openvino/openvino-samples/hello-classification>`

Uninstalling Intel® Distribution of OpenVINO™ Toolkit
#####################################################
Expand All @@ -189,5 +189,5 @@ Additional Resources
* :doc:`Troubleshooting Guide for OpenVINO Installation & Configuration <../install-openvino>`
* :doc:`Convert models for use with OpenVINO™ <../../../openvino-workflow/model-preparation/convert-model-to-ir>`
* :doc:`Write your own OpenVINO™ applications <../../../openvino-workflow/running-inference/integrate-openvino-with-your-application>`
* Sample applications: :doc:`OpenVINO™ Toolkit Samples Overview <../../../learn-openvino/openvino-samples>`
* Sample applications: :doc:`OpenVINO™ Toolkit Samples Overview <../../../get-started/learn-openvino/openvino-samples>`
* Pre-trained deep learning models on `Hugging Face <https://huggingface.co/OpenVINO>`__
Loading

0 comments on commit 0e20dc4

Please sign in to comment.