Skip to content

Commit

Permalink
[TF FE] feat: implement complex type support for selectv2 (#28773)
Browse files Browse the repository at this point in the history
**Overview:**
This pull request fixes #28678.

**Testing:**
- Tested the implementation. Verified other implementations remain
unaffected.
![Screenshot from 2025-02-01
09-00-09](https://github.com/user-attachments/assets/3dccf1ba-9fa4-42c6-ac73-c14ecb2ce441)

**CC:**
- @rkazants

---------

Signed-off-by: 11happy <[email protected]>
Co-authored-by: Roman Kazantsev <[email protected]>
  • Loading branch information
11happy and rkazants authored Feb 2, 2025
1 parent ce69c62 commit 4c01a98
Show file tree
Hide file tree
Showing 2 changed files with 84 additions and 22 deletions.
57 changes: 35 additions & 22 deletions src/frontends/tensorflow_common/src/op/select.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
#include "openvino/op/shape_of.hpp"
#include "openvino/op/squeeze.hpp"
#include "openvino/op/subtract.hpp"
#include "openvino/op/unsqueeze.hpp"

using namespace std;
using namespace ov;
Expand All @@ -31,7 +32,19 @@ OutputVector translate_select_base_op(const NodeContext& node,
set_node_name(node.get_name(), select);
return {select};
}

bool has_complex_inputs(Output<Node>& x, Output<Node>& y, element::Type& complex_part_type) {
auto complex_type_mark_x = as_type_ptr<ComplexTypeMark>(x.get_node_shared_ptr());
auto complex_type_mark_y = as_type_ptr<ComplexTypeMark>(y.get_node_shared_ptr());
if (complex_type_mark_x) {
x = complex_type_mark_x->input_value(0);
complex_part_type = complex_type_mark_x->get_complex_part_type();
}
if (complex_type_mark_y) {
y = complex_type_mark_y->input_value(0);
complex_part_type = complex_type_mark_y->get_complex_part_type();
}
return (complex_type_mark_x || complex_type_mark_y);
}
OutputVector translate_select_v2_op(const NodeContext& node) {
// according to the TensorFlow documentation. See in the code:
// https://github.com/tensorflow/tensorflow/blob/v2.4.1/tensorflow/lite/kernels/select.cc#L188-L211
Expand All @@ -40,10 +53,23 @@ OutputVector translate_select_v2_op(const NodeContext& node) {
// is true or the value of 'y' if false. There are valid condition input sizes:
// 1. Either the same shape (in which case the select is elementwise), or
// 2. Broadcastable shapes between 'condition', 'x' and 'y'.
default_op_checks(node, 3, {"SelectV2", "SELECT_V2"});
// no preparation for inputs are needed
// inputs are already NumPy broadcastable
return translate_select_base_op(node, node.get_input(0), node.get_input(1), node.get_input(2));
default_op_checks(node, 3, {"SelectV2", "SELECT_V2"}, true);
auto condition = node.get_input(0);
auto x = node.get_input(1);
auto y = node.get_input(2);

element::Type complex_part_type;
auto is_complex = has_complex_inputs(x, y, complex_part_type);

if (is_complex) {
auto const_negative_one = make_shared<v0::Constant>(element::i32, Shape{1}, -1);
auto new_condition = make_shared<v0::Unsqueeze>(condition, const_negative_one);
auto result = translate_select_base_op(node, new_condition, x, y);
auto complex_result = make_shared<ComplexTypeMark>(result[0].get_node_shared_ptr(), complex_part_type);
return {complex_result->output(0)};
} else {
return translate_select_base_op(node, condition, x, y);
}
}

OutputVector translate_select_op(const NodeContext& node) {
Expand All @@ -59,21 +85,9 @@ OutputVector translate_select_op(const NodeContext& node) {
auto condition = node.get_input(0);
auto x = node.get_input(1);
auto y = node.get_input(2);
auto complex_type_mark_x = as_type_ptr<ComplexTypeMark>(x.get_node_shared_ptr());
auto complex_type_mark_y = as_type_ptr<ComplexTypeMark>(y.get_node_shared_ptr());

auto is_complex = (complex_type_mark_x || complex_type_mark_y);
element::Type complex_part_type;

if (complex_type_mark_x) {
x = complex_type_mark_x->input_value(0);
complex_part_type = complex_type_mark_x->get_complex_part_type();
}

if (complex_type_mark_y) {
y = complex_type_mark_y->input_value(0);
complex_part_type = complex_type_mark_y->get_complex_part_type();
}
auto is_complex = has_complex_inputs(x, y, complex_part_type);

// compute number of dimensions to unsqueeze the condition
auto cond_rank = compute_subgraph_scalar_rank(condition, element::i32);
Expand All @@ -85,14 +99,13 @@ OutputVector translate_select_op(const NodeContext& node) {
auto new_subshape = make_shared<v3::Broadcast>(const_one, num_new_axes);
auto cond_shape = make_shared<v3::ShapeOf>(condition, element::i32);
// use extra dimensions in the begin to avoid concatenation of empty tensors that is not supported by Concat
auto const_1 = make_shared<v0::Constant>(element::i32, Shape{1}, 1);
auto new_cond_shape = make_shared<v0::Concat>(OutputVector{const_1, cond_shape, new_subshape}, 0);
auto new_cond_shape = make_shared<v0::Concat>(OutputVector{const_one, cond_shape, new_subshape}, 0);

// prepare the condition to have the same rank as operands `x` and `y`
auto prep_cond = make_shared<v1::Reshape>(condition, new_cond_shape, false)->output(0);
// squeeze prep_cond by one extra dimension specially added
auto const_0 = make_shared<v0::Constant>(element::i32, Shape{1}, 0);
prep_cond = make_shared<v0::Squeeze>(prep_cond, const_0);
auto const_zero = make_shared<v0::Constant>(element::i32, Shape{1}, 0);
prep_cond = make_shared<v0::Squeeze>(prep_cond, const_zero);

auto result = translate_select_base_op(node, prep_cond, x, y);
if (is_complex) {
Expand Down
49 changes: 49 additions & 0 deletions tests/layer_tests/tensorflow_tests/test_tf_SelectV2.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,3 +51,52 @@ def test_select_v2_basic(self, params, ie_device, precision, ir_version, temp_di
self._test(*self.create_select_v2_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)


class TestComplexSelectV2(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
rng = np.random.default_rng()
assert 'cond:0' in inputs_info, "Test error: inputs_info must contain `cond`"
assert 'x_real:0' in inputs_info, "Test error: inputs_info must contain `x_real`"
assert 'x_imag:0' in inputs_info, "Test error: inputs_info must contain `x_imag`"
assert 'y_real:0' in inputs_info, "Test error: inputs_info must contain `y_real`"
assert 'y_imag:0' in inputs_info, "Test error: inputs_info must contain `y_imag`"
cond_shape = inputs_info['cond:0']
inputs_data = {}
inputs_data['cond:0'] = np.random.randint(0, 2, cond_shape).astype(bool)
for part in ['x_real:0', 'x_imag:0', 'y_real:0', 'y_imag:0']:
inputs_data[part] = 4 * rng.random(inputs_info[part]).astype(np.float32) - 2
return inputs_data

def create_complex_select_v2_net(self, cond_shape, x_shape, y_shape):
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
cond = tf.compat.v1.placeholder(tf.bool, cond_shape, 'cond')
x_real = tf.compat.v1.placeholder(tf.float32, x_shape, 'x_real')
x_imag = tf.compat.v1.placeholder(tf.float32, x_shape, 'x_imag')
y_real = tf.compat.v1.placeholder(tf.float32, y_shape, 'y_real')
y_imag = tf.compat.v1.placeholder(tf.float32, y_shape, 'y_imag')
complex_x = tf.raw_ops.Complex(real=x_real, imag=x_imag)
complex_y = tf.raw_ops.Complex(real=y_real, imag=y_imag)
complex_select = tf.raw_ops.SelectV2(condition=cond, t=complex_x, e=complex_y)
tf.raw_ops.Real(input=complex_select)
tf.raw_ops.Imag(input=complex_select)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None

test_data_basic = [
dict(cond_shape=[3, 1], x_shape=[3, 1], y_shape=[3, 1]),
dict(cond_shape=[], x_shape=[2], y_shape=[3, 2]),
dict(cond_shape=[4], x_shape=[3, 2, 1], y_shape=[2, 4]),
]

@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit
@pytest.mark.nightly
def test_complex_select_v2(self, params, ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
self._test(*self.create_complex_select_v2_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)

0 comments on commit 4c01a98

Please sign in to comment.